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Abstract: Big data is critical to help agriculture meet the challenges of growing world population, climate 
change and urbanization. Recent success stories include precision agriculture, phenotyping, and global 
agricultural monitoring. Many of these initiatives are made possible by novel data sources such as satellite 
imagery, instrumented tractors and initiatives such as the Global Open Data for Agriculture and Nutrition 
(GODAN). This whitepaper surveys agricultural big datasets, characterizes their limitations, lists transformative 
opportunities and suggests a plan to engage and nurture Agriculture Big Data (AgBD) research community. 
Public big data includes satellite imagery (e.g., Earth on Amazon Web Services, Google Earth Engine), surveys 
(e.g., National Agricultural Statistics Service), financial statistics (e.g., Economic Research Service), social media 
(e.g., Twitter), etc. Private datasets describe yield (e.g., precision agriculture, Farm Service Agency), farm loss 
(e.g., Risk Management Agency) and condemnation (Food Safety and Inspection Service), etc. Limitations 
include data and metadata gaps, insufficient data storage, preservation, and documentation, lack of scalable 
spatiotemporal big data analytics methods, and inadequate secure data-sharing mechanisms. Transformative 
opportunities include workforce development, Cyber-Infrastructure (e.g., long-term, curated data repository 
services), data norms and sharing models, metadata, big data aided mechanistic models, spatiotemporal big data 
analytics for data-driven hypothesis generation and testing, etc. These transformative opportunities cannot be 
realized without federal leadership. To make progress towards the transformative opportunities, the whitepaper 
also lists resources to engage researchers from agriculture and big data in collaborative efforts with federal 
support. 
 
1. Big Data 

In general, big data is defined by the 3Vs: volume, velocity, and variety. Volume refers to the exponential 
growth in the amount of data collected (e.g., high-resolution and high-frequency of satellite and aerial imagery). 
Velocity refers to the speed of data collection (e.g., real-time in-field cameras for monitoring plant growth). 
Variety refers to the large number of data sources and formats (e.g., traditional survey data vs. social media 
posts about food and food-borne illnesses). 

In the agriculture community, big data is often viewed as a combination of technology and analytics that 
can collect and compile novel data, and process data in a more useful and timely way to assist decision-making 
(Stubbs, Big Data in U.S. Agriculture, Congressional Research Service, 2016). This view simultaneously 
considers both the data and the processing methods used to extract value from the data. 

 

                                                
†This whitepaper paper was co-authored by a few volunteers following an April 2017 Midwest Big Data Hub workshop [57] titled 

"Machine Learning: Farm-to-Table,” which brought together academic researchers from Agriculture, Food-Energy-Water, Engineering, 
Computer Science, and Agricultural Economics, with representatives from startups, small & medium size enterprises (SMEs), and large 
corporations, to discuss current applications of Machine Learning, big data and other computational approaches to understanding Ag-
food-energy-water systems.   
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2. The Potential of Big Data for Agriculture 
With the global population projected to exceed 9 billion by 2050 [2], it will be critical to optimize agricultural 

production and food supply chains to more efficiently produce and deliver food, fiber and fuel to meet growing 
demand [3] [4]. This goal is further complicated by climate change and urbanization. Agricultural Big Data 
(AgBD) will be an essential component of the second green revolution that will be required to meet these needs. 

AgBD sets are already used by many countries and commodity markets for the early detection of disruptions 
in supply chains for commodity crops such as wheat, rice, corn, and soybean [5] [6] [7] [8] [9]. Precision 
agriculture has developed with advances in remote sensing data collection, including improved spatial and 
temporal resolution, spectral resolution, variety of sensor platforms (e.g., satellite, aerial, ground-based), etc. 
[10]. A recent congressional reception also reported that precision agriculture has shown promise in increasing 
on-farm yields [11]. In addition, a recent Fortune magzine [12] quoted the potential of increasing farm profits 
by almost $100 per acre via prescriptive farming that uses predictive modeling and AgBD to optimize farm 
management practices ranging from customized seed planting density to fertilizer application based on local 
soil characteristics and long-range weather forecasts. In animal agriculture, AgBD and predictive modeling are 
critical for surveillance and control of infectious diseases. 

Beyond agricultural production, GPS-enabled sensors are being used to track food and generate AgBD of 
supply chains. Such technologies are estimated to help reduce food-borne illnesses by 76 million in the US 
every year [13]. AgBD can also be used to improve supply chain security. For example, spatial data mining 
techniques (e.g., hotspot detection) [14] [15] [16] [17] [63] [64] [65] can be used with AgBD to identify crops 
(e.g., California almonds [18], Cocoa [19]) produced in small geographic regions or a set of regions that are 
vulnerable to climate change and natural disasters. Their supply chain maps can then predict geographic 
chokepoints of these sensitive crops and animal-based commodities, informing industry and consumers of risks 
before they hit. Similarly, spatial data mining may also help select sustainable sources (e.g., avoid deforestation 
based palm oil) in a supply-chain [20]. In addition, detailed data on consumer and market behavior can be used 
to improve food access and nutritional outcomes, and geo-social media can be leveraged for timely detection 
of food contamination events and control related illnesses. 

We envision that AgBD will assist decision-making in agriculture at four levels: [21] [22]: 
Descriptive: For precision agriculture and high throughput phenotyping applications, the aim of AgBD 

collection is to characterize spatial and temporal variability in soil, land cover, crop and weather characteristics 
and identify stressors, traits, or infectious disease risk factors that need better management.  

Prescriptive: Using data collected and associated maps of individual characteristics, traits, or exposures to 
infectious agents, a prescriptive analysis is conducted to determine necessary farm management interventions.  

Predictive: A predictive analysis using historic datasets as well as integrated soil, crop, weather and market 
models may forecast outcomes such as crop yields and food insecurity. Predictive analytics can also be used to 
improve decision making to forecast spread and limit the impact of infectious agents on crops and livestock. 

Proactive: A proactive level involves observations of crop development and stress on multiple farms over 
large regions and time scales. AgBD from these observations are pooled and mined to obtain relationships 
between site characteristics, weather and crop performance under a range of management conditions. These 
relationships can be used to customize management practices and seed selection to local conditions. 

3. Current Agricultural Big Data 
Public Agricultural Big Data: Various types of AgBD have been made publicly available by a number of 

providers as shown in Table 1. The U.S. Department of Agriculture remains the major provider of services for 
managing and sharing most types of agricultural data (e.g., survey, financial, scientific, etc.). In 2013, in its 
response to the G8 International Conference on Open Data for Agriculture [23], USDA also launched the 
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GODAN (Global Open Data for Agriculture and Nutrition) Initiative [24] to support the sharing of open data 
to help ensure world food security. 

Besides USDA, the U.S. Bureau of Labor Statistics, the National Oceanic and Atmospheric Administration 
(NOAA), and the National Aeronautics and Space Administration (NASA) also continue to provide a huge 
volume of satellite imagery with increasingly high resolution and high frequency. Many open imagery datasets 
are also accessible through platforms such as Amazon Web Services S3 (AWS), Google Earth Engine and 
NASA Earth Exchange. Imagery datasets are critical AgBD resources in many agricultural applications, 
including precision agriculture and yield prediction. In addition, with the growth of popularity of online social 
media, more and more users are sharing agriculture-related information (e.g., food consumption, food-borne 
illness). For many social media platforms (e.g., Twitter, Google Search), this information can be retrieved and 
downloaded for analysis. 

Table 1. Examples of Public Agricultural Big Data [1] 
Type of Public AgBD Provider 

Satellite imagery and 
meteorological information 

Cloud-computer based (e.g., Earth on Amazon Web Services [28], 
Google Earth Engine [29], and NASA Earth Exchange [30]) and 
others (e.g., National Oceanic and Atmospheric Administration 
(NOAA) [25], National Aeronautics and Space Administration (NASA) 
[26] and U.S. Bureau of Labor Statistics [27]) 

Survey data National Agricultural Statistics Service (NASS)* [31] 
Financial data Economic Research Service (ERS)* [32] 

National Water Economy Database (NWED) [33] 
Scientific data Agricultural Research Service (ARS - U)* [34] 
Soil, water, and geospatial data Natural Resources Conservation Service (NRCS)* [35] 
Price and sales data Agricultural Marketing Service (AMS)* [36] 
Commodity and market data World Agricultural Outlook Board (WAOB)* [37] 
Generic data Global Open Data for Agriculture and Nutrition (GODAN)* [24] 

VegScape* [38] 
Animal disease incidence data World Animal Health Information System (WAHIS) [39] 

EMPRES Global Animal Disease Information System (Empres-i2) [40] 
Citizen data  Social media platforms (e.g., Twitter posts about food) 

* Service provided by U.S. Department of Agriculture (USDA) 

Private Agricultural Big Data: One source of private data is generated through administrative processes in 
government agencies (e.g., Farm Service Agency) as shown in Table 2. These data may contain individual level 
or other private information and are not publicly available. Other key types of privately held data are collected 
by agricultural companies, financial institutions and individual farmers [1]. For example, sub-field level and 
plant-level data have been collected using drones, field-sensors and cameras. Private AgBD have benefited 
many groups of users, including farmers (e.g., improved production), ranchers, retailers, industry groups and 
environmental scientists (e.g., reduced usage of fertilizer or antibiotics). The private sector has also seen the 
introduction of a variety of new technologies. For example, positioning techniques are used on dairy farms to 
track the movements of herds. However, due to privacy or business concerns (e.g., competing in commodity 
markets), these data are usually kept for internal use only. 

3.1. Limitations of Current Agricultural Big Data 
Limited data storage and preservation: The increasing volume, variety and velocity of agricultural big data (AgBD) 

sets demands excessive computing power and computational resources to manage and analyze. High-resolution 
(e.g., sub-meter) datasets can be collected at high temporal resolution (e.g., daily or more frequent) via ground-
based sensors, low-flying UAVs and remote sensing satellites. It has become increasingly difficult to store and 
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maintain AgBD without significant investment in big data platforms such as high-performance computing. 
More importantly, some types of data need to be preserved for long-term use and analysis, which requires a 
highly centralized and reliable platform managed by dedicated administrators. The agriculture research 
community is facing the dilemma that valuable AgBD is being collected at an unprecedented pace and scale, 
but the effort, expense and time required for data management discourage the efficient sharing and reuse of 
these datasets. 

Table 2. Examples of Private Agricultural Big Data [1] 
Type of Private AgBD Owner 

Yield and loss data Risk Management Agency (RMA)* [41] 
Farm record data of individual producers, 
federal payments, and loan information 

Farm Service Agency (FSA)* [42] 
Farmers 

Conservation plans, geospatial data, and 
conservation program activities and payments 

Natural Resources Conservation Service (NRCS)* [35] 

Generic research data Agricultural companies (e.g., equipment manufacturers, 
chemical companies) 
Farmers and research groups (e.g., at universities) 

Animal movement data Farmers and companies 
Herd production and health data Industry groups; Information-sharing services; Farmers 
Diagnostic animal health data Universities; Commercial laboratories 
Carcass condemnation data Food Safety and Inspection Service (FSIS)* [43] 
Genetic, metagenetic, microbiome data Agricultural companies; Research groups 
Citizen data (processed) Processed social media data at university research labs 

(e.g., Food Protection and Defense Institute at the 
University of Minnesota [44]) 

* Service provided by U.S. Department of Agriculture (USDA) 

Data sharing barriers: Data privacy is a major concern of AgBD sharing, and private AgBD owners may be 
reluctant to share the data. Even if private data (e.g., administrative data; field treatment data) is shared, it is not 
certain that one private dataset will be compatible with another private dataset or with other public datasets. 
For example, sampling by public agencies is usually conducted following statistical standards [45], whereas the 
same is not necessarily true of private data collection. Security is another concern: Many private agriculture 
datasets are stored locally rather than on cloud computing platforms due to security concerns, and these 
concerns need to be addressed before many data owners will be willing to share their data [1]. 

Insufficient data documentation: To support big data analytical methods in agriculture, such as data mining, it is 
increasingly common for satellite imagery to be supplemented with more and more field data. Although original 
owners may be fully aware of their data’s properties (e.g., coordinate system, error range), it is often difficult 
for others to reuse the data or combine it with other data due to a lack of this sort of documentation. Incomplete 
metadata significantly limits the value of the laborious and time-consuming data collection tasks in many of the 
existing research projects. 

Lack of connection between observation and theory: Empirical models (e.g., machine learning outputs) generated by 
AgBD can be difficult to generalize outside of their target geography or time frame. Current empirical crop 
models [5] [46] cannot be used to extrapolate beyond training data, making them inappropriate for non-
stationarity such as with new climate and weather patterns, or new or improved crops [47]. Beyond empirical 
models trained solely based on observations, mechanistic models need to be developed to make simulations 
based on theory to address the non-stationarity in AgBD prediction problems.  

Missing crucial data: While novel data collection and analytical methods have generated valuable insights for 
agricultural production, data availability remains sparse in domains related to natural resources (e.g., water use), 
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as well as other phases in the food life cycle (e.g., food movements, food consumption, household outcomes, 
etc.) as shown in Figure 1. For example, data on water use for agriculture are not collected for many locations 
in the U.S. Big data analytical techniques provide the ability to predict such outcomes using alternate data 
sources (e.g., remote sensing imagery, SMS-based surveys). These models, however, require substantial data for 
validation. For example, predicting food security crises would greatly improve the global ability to respond with 
food and funds to limit harm, but little data exist on global household food insecurity at the spatial and temporal 
scale needed for validation. 

 
Figure 1. Food life cycle 

 
4. The Case for Federal Actions on Agricultural Big Data 

The case for federal actions are summarized in Table 3, and several of these are detailed in the subsections. 

4.1. Workforce development 
Specific coursework must be designed to develop an agricultural research workforce with big data skills to 

continue to grow the AgBD economy and improve food production. The courses will train scientists and others 
interested in data-driven agriculture (who lack a thorough computer science background) to understand, adapt 
and correctly apply big data approaches (e.g., machine learning, spatiotemporal data mining, high-performance 
computing). These courses could reach beyond the academy with modules designed with and for people in 
agribusiness and government.  Federal (e.g., NIFA) funding can make a difference to help universities and other 
educational organizations develop such courses and programs and prepare skills for AgBD economy. 
4.2. Cyber-Infrastructure: The rationale for centralized, long-term, curated data repository services 

Success stories of centralized curated storage center in agriculture include seed-banks (e.g., USDA Plant 
introduction station, and Fort Collins, CO). Given the value of curated, long-term, geographically-diverse 
emerging big data (from precision agriculture and beyond), to support longitudinal studies (e.g., gene-
environment interaction, impact of climate change), there is a ground-breaking opportunity to create NIFA-
supported data centers that provide long-term storage (e.g., 10 years, permanent), and curation for sharing, 
discovery and dissemination. 

We envision a centralized data center, where researchers and others can share their own AgBD and access 
others’ AgBD to facilitate big data analytics without worrying about data storage, persistency, security and 
privacy. A critical step to realize this is to first build a catalog of current data repositories (e.g., data.gov portal) 
of value for modeling. Identify existing data formats, and facilitate community engagement around developing 
standards for data collection and documentation. The path towards long term, accessible, and harmonized (i.e. 
curated) data will begin with the development of APIs and associated software that can transform from current 
data structures into shared data models. With translation tools and APIs, data creators and maintainers can 
work together as a community to put similar information into shared formats.  

4.3. Data norms and sharing models 
We envision a set of NIFA-approved norms that define and implement conventions for agriculture big data 

(AgBD) research. The norms would cover: (1) experimental design and sampling methods to use for data 
collection in different scenarios; (2) conditions that must be considered in controlled experiments (case by case) 
and (3) minimum acceptable spatial and temporal precision and resolution of data (e.g., field sensors, UAVs). 

Food Production Food Distribution Food Processing 

Marketing 

Food Selling and Purchasing Preparation and Consumption 

Waste Recovery 
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The NIFA-AgBD norms can have multiple levels (similar to database norm) to allow flexibility in data selection 
for different research. These best practices also open up opportunities to develop tools to automate them in 
research (e.g., R package that uses power analysis to estimate required sample size). A recent work also suggested 
the use of standards across agricultural Information and Communications Technology (ICT) to facilitate the 
sharing and reuse of open agricultural data and models [48]. 

We also envision a NIFA sharing model that implements privacy protection rules (e.g., database access 
control) and techniques (e.g., data aggregation) to protect sensitive personal information and facilitate private 
data sharing. Sharing models can also be created for special scenarios. For example, in public safety, Enhanced-
911 allows sharing of private information (e.g., location) during an emergency. Similarly, in agriculture, sharing 
private data in case of emergency (e.g., disease outbreak in cattle farms) may help control the situation and 
reduce loss to farmers. 

Table 3. Agricultural Big Data Opportunities and Research Needs 
Areas AgBD Opportunities and Research Needs 

Workforce 
Development 

Training for farmers and AgBD companies with coursework on big data methods at 
land-grant universities and beyond in collaboration with department of education. 

CyberInfrastructure NIFA-supported storage‡ for valuable AgBD sets along the lines of NIFA support 
for genome databases (e.g., MaizeGDB) and seed banks (e.g., the USDA Plant 
Introduction System).  
Improve rural broadband infrastructure to support AgBD collection in rural areas. 

Private data sharing 
and compilation 

Models for sharing private AgBD. For example, administrative data may provide 
behavioral and societal information that are not well studied.  
Standards for sharing of private AgBD (e.g., data format, statistical guidance). 
Methods for compiling public and private AgBD. 

Novel Data 
Collection 

New data collection methods for model validation, combined with funding the 
development and testing of algorithms to fill in data gaps using predictions from 
existing information (e.g., remotely sensed data, market data). 
Public data on food movement and food consumption. 
New approaches to improve data transfer capacity between farms and data center 
(e.g., use of TV white space or other less frequently used channels). 

Spatiotemporal 
Machine Learning  

Leveraging of new high-resolution (e.g., daily, 1 meter) satellite data to monitor crops 
on a large scale. 
Spatiotemporal hotspot detection to identify risks in supply-chain (e.g., heavily 
localized plants that are subject to climate change). 
Spatial optimization for land-use and land-cover allocation, and identification of 
potential production improvements through changes in management. 
Disease risk forecasting for livestock, including environmental, epidemiological, and 
weather-related data. 

Mechanistic Models Combining empirical models and mechanistic models to link observation with theory. 
Citizen Engagement Social Media, Apps, Easy-to-use Decision Support for growers and ranchers. 

Downstream behavioral change through apps (e.g., reduce food waste). 
Cognitive and behavioral science applied to enhance feedback for technology 
improvement, scientific advancement and innovation. 

Data analytics in 
animal agriculture 

Application of data science methods to detect aberrations in AgBD data streams, 
which may indicate changing or emerging threats to animal health. 
New approaches to optimize animal health and production through linking processes 
occurring at multiple spatial and temporal scales. 
Development of data pipelines to promote analysis of data in near real-time. 

                                                
‡ Other federal agencies have faced similar challenges and included long-term data storage and preservation as part of their core 
missions (e.g., cancer registries, Census Bureau, NASA Earth Explorer). 
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4.4. Metadata 
Enriching AgBD sets with detailed metadata is important to enhance their value beyond their original 

purpose. Metadata contains necessary details describing a dataset, such as time, location and explanations of 
properties. Creating metadata and documentation for existing AgBD is a laborious task. NIFA funding could 
provide an important opportunity to complete the metadata and help repurpose shared datasets for new 
scientific research, thereby facilitating collaboration and opening many new avenues for scientific discovery. 
The increased amount of re-usable data will also provide more training data for computational approaches (e.g. 
supervised learning) to improve the accuracy and robustness of big data analytics for predicting agricultural 
outcomes. 
4.5. Novel data collection and compilation 

Where data do not exist, NIFA could support novel data collection and compilation through funding calls, 
and by facilitating interactions with other government agencies engaged in data provision. NIFA might target 
data for model development and validation, combined with funding the development and testing of algorithms 
to fill in data gaps using predictions from existing information (e.g., remotely sensed data, market data). 
Strategically targeting methods to fill data gaps, combined with systematically-collected sub-samples of field 
data could dramatically improve researchers’ abilities to develop and test new models of environmental and 
socio-economic outcomes of agricultural processes. 
4.6. Spatiotemporal big data analytics for data-driven hypothesis generation and testing 

AgBD analytics provides great opportunities to generate new hypotheses from large datasets that are 
otherwise tedious and time-consuming for human researchers to inspect and identify. For example, in food 
supply chain analysis, it is important to identify high-risk nodes whose failure has severe implications (e.g., type 
of crops that are grown only in a few small geographic regions or that rely on specific ports threatened by sea-
level rise). Analytic methods can also assist hypothesis testing in longitudinal studies that require coordinating 
experiments across multiple sites. For example, testing a relationship between plant growth rate and plant 
geometry must be done in field trials across multiple seasons and locations. AgBD analytics can assist in 
controlled experiment design (e.g., spatial optimization [49] [50]) to improve the efficiency of field trials.  

However, agricultural data exhibit spatiotemporal auto-correlation and non-stationarity [63] [64] [65], which 
violate common assumptions (e.g., independence and identical distribution of learning samples) underlying 
common machine learning and big data analytics methods. In addition, current spatial statistical methods (e.g., 
spatial auto-regression) do not scale up to big datasets due to their computational complexity. Thus, there is a 
great need to develop computationally scalable methods to analyze spatiotemporal datasets in agriculture. 
NIFA’s funding is important to support researchers to develop scalable spatiotemporal data analytics methods 
and explore AgBD-based hypothesis generation and experiment design. 

4.7. Agriculture big data aided mechanistic models 
Mechanistic models enable the use of scientific understanding to harmonize datasets from diverse 

experimental designs and scales by directly simulating the system states under the experimental and 
environmental conditions under which the data were generated. In the context of theory, it is possible to better 
interpret and utilize data that are available to identify knowledge gaps. Similarly, using mechanistic models to 
simulate dynamics at multiple scales simultaneously allows coherent evaluation and reanalysis of data collected 
at different scales and temporal frequencies [51]. This approach has been used for decades in the geosciences 
including weather forecasting and the development of historical climate data products for decades, and more 
recently has been applied to agricultural sciences.  

Linking predictions to mechanistic behavioral models holds the potential to better evaluate how human 
behavior may affect agricultural outcomes.  Agricultural production outside of test plots result from a 
combination of agroecological characteristics, weather and human behavior.  Forecasting models may be unable 
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to capture the human responses to changing climates or market conditions, and require a coupling with 
behavioral models to capture outcomes.  Further, to understand these outcomes and identify how best to 
improve agricultural productivity requires insights into causal mechanisms underlying these processes.  

 
4.8. Data analytics in animal agriculture 

While crop-based agriculture and human medicine have harnessed big data to optimize “precision” 
approaches to improve production and health outcomes [52], AgBD in animal agriculture has been mostly 
focused on spatial analyses and bioinformatics [53] [54]. However, the use of AgBD for animal disease 
surveillance is a small but rapidly growing field, with applications ranging from targeting specific populations 
to tracking or even anticipating spatial and temporal trends. The development and refinement of such 
capabilities in animal agriculture could significantly improve our ability to identify and respond to emerging 
animal health concerns, especially if collection and analysis of data occurs in near real-time rather than 
retrospectively [55].  

Animal agriculture data that are or are becoming “big” include “-omics” data, geospatial data, publicly 
available data repositories such as World Animal Health Information System and EMPRES Global Animal 
Disease Information System (Empres-i2), clinical and diagnostic data for food animal diseases, and data on 
animal movement from local to international scales [56]. In addition, data associated with production 
constraints in food animal industries (such as infectious disease, mastitis, nutrition, physiological metrics, etc.) 
are often housed in industry-based data warehouses that have the participation of large proportions of the 
industry. The analysis of such data can be used to understand health risks and minimize the impact of adverse 
animal health issues by, for example, increasing the effectiveness of control and surveillance by identifying high-
risk populations through the analysis of spatial and animal movement data; combining disparate data or 
processes acting at multiple scales through mechanistic modeling approaches; and harnessing high velocity data 
to monitor animal health trends and for early detection of emerging health threats [55].  

5. Engaging Big Data Research Community in Agriculture 
Future innovations in AgBD research will require engaging multi-sector communities across the nation. The 

Big Data Regional Innovation Hubs (BD Hubs) were launched by the National Science Foundation (NSF) to 
strengthen the data ecosystem, and develop effective academic-industry-government-NGO networks to 
address scientific and social issues of regional and national interest. The BD Hubs cultivate communities and 
resource networks, and build collaborations that reduce barriers to data sharing and access, and develop 
activities that build capacity in Data Science and Big Data applications. 

To address the challenges and opportunities outlined above, interdisciplinary collaboration is needed 
between research communities in computer science and agriculture. We envision the collaboration happening 
in two directions, namely, from computer-science to agricultural-science (C2A) and from agricultural-science 
to computer-science (A2C). 

In C2A, computer scientists introduce big data ideas to data-driven agricultural scientists through specifically 
designed workshops, seminars and courses. Successful AgBD applications (e.g. GEOGLAM) will be 
introduced to illustrate how AgBD can be used to achieve new goals in agricultural science. In A2C, agricultural 
scientists will thoroughly explain and list open agricultural problems to computer scientists so that computer 
scientists can know exactly which domain problems to work on and which goals to achieve. In addition, 
agricultural scientists will create benchmark datasets for the open problems so that computer scientists can 
evaluate the performance of new algorithms and avoid over-fitting. NIFA funding is critical for both the C2A 
workshops and seminars, as well as the careful defining of open problems in agriculture and the generating of 
A2C benchmark datasets. 
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The development of knowledge-exchange software will be another core component of this collaboration. 
Software provides a framework for formal collaboration and encoding of knowledge. In addition, software and 
data provide a formal representation of knowledge, and thus a ‘truth’ that cuts across the interdisciplinary 
barriers in language and understanding. Conversion of textbook knowledge into tools for interoperability and 
QAQC are excellent applied exercises for training both agricultural and computer scientists. The subsequent 
extension of such tools to incorporate more modern statistical tools and concepts in informatics will provide 
opportunities for graduate student and postdoc level work to build new research and interdisciplinary skills that 
are valuable for both academic research and industry. 
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