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| mproving Prediction Accuracy of Regression Problems with Optimization-based Ensemble L earning and a Two-layer
Feature Selection Method

| ntroduction

This study proposes two state-of-art opti mization-based methodol ogies to improve prediction accuracy for regression problems.

1. The problem of ultra-high-dimensional datasets, in which the number of predictors exceeds 2. Aggregating multiple learners through an ensemble of models ams to make better

the number of observations, is studied and a hybrid two-layer optimization-based model predictions by capturing the underlying distribution more accurately. We considered blending
using Genetic Algorithm (GA) and Elastic Net is proposed. This optimization model as one type of ensemble creating method and designed an optimization-based ensemble
considers minimizing prediction RMSE and number of selected predictors using GA with earning algorithm that not only intends to reduce variance, but also ams at decreasing the
Elastic Net as its fitness function, in the first layer. In the second layer, the best subset of prediction bias. To this end, a bi-level optimization-based algorithm that considers tuning
predictorsis used to apply simple Elastic Net on, intending to e iminate more predictors. nyperparameters as well as finding the optimal weights to combine ensembles was proposed.
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Experimental Results
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Conclusion

* A bi-level nested algorithm that finds the optimal weights to combine base learners as
well as the optimal set of hyperparameters for each of them (COWE-ITH) was
designed.

« Based on the obtained results, it was shown that COWE-ITH is able to dominate base
learners as well as other ensembl e creation methods.

« Furthermore, it was demonstrated that the hyperparameters used in creating optimal
ensembles are different when they are tuned internally.

« Datasets with high ratio of number of predictors to number of observations are prone to
overfitting and single-layer feature selection methods usually are not able to eliminate
all irrelevant predictors thus, leading to high prediction error.
* The proposed two-layer feature selection method reduces the number of predictors
while maintaining the prediction accuracy.
* Theresults of applying the two-layer method on multiple Maize genes with various shape ratio
show that it outperforms established benchmarks.
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