CUSTOMER LIFETIME VALUE PREDICTION

A Case of Mobile Gaming Company
Background

BTYD Models

- Targeted promotions increase the LTV of customers
- CLTV research is dominated by Buy Until You Models
- Two important factors to be modeled
- Distribution of Revenue
- Distribution of churn
Questions to Answer

- How many customers are active?
- How many customers will be active one year from now?
- Which customers have churned?
- How valuable will any customer be to the company in the future?
The different BTYD model implementations include:

• NBD (Ehrenberg 1959)

• Pareto/NBD Schmittlein, Morrison, and Colombo 1987)

• BG/NBD (P. Fader, Hardie, and Lee 2005)

• Pareto/NBD (HB) Ma and Liu (2007)

• Pareto/NBD (Abe) Abe (2009)

• BG/BB (Fader, Hardie, and Shang 2010)

• Pareto/GGG Platzer and Reutterer (2016)
Data

Revenue

- PlayerId
- BrandId
- DepositDate
- Deposit
- Income

Registrations & Demographics

- PlayerId
- Registration Date
- Age
- Gender
- Country
While active, transactions made by a customer in time period t is Poisson distributed with mean λt

Differences in transaction rate between customers follows a gamma distribution with shape r and scale α

Each customer becomes inactive after each transaction with probability p

Differences in p follows a beta distribution with shape parameters a and b
Analysis

<table>
<thead>
<tr>
<th>PlayerId</th>
<th>frequency</th>
<th>recency</th>
<th>T</th>
<th>monetary_value</th>
<th>probability_alive</th>
<th>pred_num_txn</th>
<th>exp_avg_sales</th>
<th>predicted_clv</th>
<th>manual_predicted_clv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0</td>
<td>166.0</td>
<td>233.0</td>
<td>16.723333</td>
<td>0.562803</td>
<td>0.21</td>
<td>19.343080</td>
<td>4.094933</td>
<td>4.062047</td>
</tr>
<tr>
<td>2</td>
<td>48.0</td>
<td>223.0</td>
<td>236.0</td>
<td>144.556458</td>
<td>0.781034</td>
<td>4.51</td>
<td>145.137995</td>
<td>648.405339</td>
<td>654.572357</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>112.0</td>
<td>195.0</td>
<td>12.050000</td>
<td>0.399282</td>
<td>0.18</td>
<td>14.407464</td>
<td>2.562958</td>
<td>2.593343</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>98.0</td>
<td>198.0</td>
<td>6.580000</td>
<td>0.370472</td>
<td>0.11</td>
<td>9.744506</td>
<td>1.076248</td>
<td>1.071896</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>148.0</td>
<td>228.0</td>
<td>27.826000</td>
<td>0.397085</td>
<td>0.25</td>
<td>29.728997</td>
<td>7.440266</td>
<td>7.432249</td>
</tr>
</tbody>
</table>

![Graph showing probability of customer being alive by frequency and recency](image)

Note: The graph illustrates the probability of a customer being alive, categorized by frequency and recency of their transactions. The axes represent the customer's historical frequency on the x-axis and recency on the y-axis. The color scale indicates the probability, with darker shades representing a higher probability.
Future Work

- BTYD models suffer from algorithmic complexity and fail to scale to large number of customers
- BG/NBD model assumes independence between transaction and churn process
- Pareto methods allow the use of co-variates
- Monte Carlo and Markov Chain simulations outperform BTYD models but they are expensive to generate
- BTYD models are limited by parametric family assumptions
THANK YOU

Pavan Kumar Ghantasala

MS Business Analytics and Information Management
Krannert School of Management
Purdue University
References and Sources

- pavanghantasala183/Customer-Life-Time-Value-Prediction (github.com)
- History of Buy Til You Die (BTYD) Models - Retina.ai
- palive_for_BGNBD.DVI (brucehardie.com)
- Predicting Customer Life Time Value (CLTV) via Beta Geometric / Negative Binominal Distribution (BG/NBD) and Gamma Gamma Model | by Burak Doğrul | Geek Culture | Medium