Skip to main content

Reshaping Agriculture in a Changing Climate with Insights from Predictive Analytics

By Shruti Gosain

We’re in a time where technology is moving faster than ever. In an age of rapidly advancing technology, the intersection of data science, climate science, and agriculture is producing game-changing results. Predictive analytics, a cutting-edge approach to data-driven forecasting, is revolutionizing our ability to foresee and respond to the challenges posed by a changing climate. It’s like having a crystal ball that helps us predict and prepare for the problems that impact society in different ways due to climate change.

The Power of Predictive Analysis in Climate Science

In the world of climate science, researchers use big sets of data from tools like satellites and weather stations. With the help of super-smart computer programs, they can make predictions about things like extreme weather and long-term climate changes. These predictions help us understand what’s happening with the Earth’s climate and get ready for changes like heat waves and storms.

Satellites and weather stations collect a huge amount of data about the weather and climate. Then, with the help of artificial intelligence and machine learning, scientists can predict things like wild weather events, seasonal changes, and long-term shifts in our climate. Now, why is this exciting? Well, think about it: These predictions are like knowing the future, but for the weather. Farmers can use this information to figure out when to plant their crops. If they know there will be a dry spell, they can be ready with extra water. And when we’re talking about big events like hurricanes or floods, predictive analytics helps us get ready—by strengthening our buildings or planning better emergency responses. The case studies in the table below this article illustrate this in more detail.

Predictive Analytics Reshaping the Future of Agriculture

Now, let’s talk more about farming. Farmers rely on the weather and the climate to grow their crops. But with increasing heat and more frequent droughts impacting yields in many growing areas, things are getting tricky. Predictive analytics steps in to help. It looks at large amounts of information like past climate data, how healthy the soil is, and how different crops are doing. Then, it tells farmers when to plant, what to plant, and how much they’ll get when it’s time to harvest. This is what’s called “precision agriculture,” where we use data to be more precise in how we grow food.

Agriculture is inherently dependent on climate, making it one of the sectors most vulnerable to climate change. Predictive analytics offers a lifeline to farmers. By analyzing historical climate data, soil health, and crop performance, predictive models can provide insights into optimal planting times, crop selection, and yield projections. The data-driven decisions enabled by predictive analytics reduce risks, enhance resource management, and increase productivity. For example, in regions facing water scarcity, predictive models can suggest the most efficient irrigation strategies to minimize water wastage. This technology is revolutionizing precision agriculture, optimizing the use of resources and minimizing environmental impact.

Imagine a farmer in a place where it’s superhot and there isn’t much rain. Predictive analytics tells them the best time to plant their crops and how much water to use so they don’t waste any. This means more food on our plates and less waste. So, it’s not just about scientists making cool predictions; it’s about using those predictions to make our world safer and smarter. It’s like having a heads-up about the future and, with that, we can plan better, adapt to change, and protect our planet. Climate science and predictive analytics are like our secret weapons against the unpredictable weather and they’re here to save the day!

Let’s look at a real-life example. In California’s wine country, vineyard managers use predictive analytics to know when to prune the vines, when to water them, and when to pick the grapes. This makes their vineyards strong and good for the environment. The integration of predictive analytics in climate science and agriculture is not just a forward-thinking idea; it’s a necessity in a world facing escalating environmental uncertainties.

Future, Necessities, and Challenges in the Path to Predictive Analytics Mastery

While predictive analytics holds immense promise, challenges exist. The accuracy of predictions depends on the quality and quantity of data, which can be influenced by factors such as data collection infrastructure and access to satellite technology. Additionally, ensuring that predictive models are accessible to farmers, particularly in developing regions, is a critical challenge.

As we look to the future, addressing these challenges is paramount. The integration of predictive analytics in climate science and agriculture is not a luxury but a necessity. It equips us to tackle the evolving climate crisis with proactive strategies, ensuring food security, environmental sustainability, and resilience in the face of uncertainty. Moreover, fostering collaboration between researchers, policymakers, and technology innovators will be essential in harnessing the full potential of predictive analytics to address the pressing challenges of our times.

Conclusion

Predictive analytics is the bridge between knowledge and action in the realms of climate science and agriculture. As we continue to refine these predictive models and make them more accessible, we inch closer to a world where our responses to climate change are not reactions but anticipations, where agriculture adapts seamlessly to shifting climate conditions, and where we collectively move towards a more sustainable and resilient future.

Get Involved

Contact the Midwest Big Data Innovation Hub if you’re aware of other people or topics we should profile here, or to participate in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities. The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

Predictive Analytics Case Studies

Precision Farming for Sustainable Agriculture
Issue: In a region experiencing increasingly erratic weather patterns, farmers faced the daunting task of optimizing crop production while conserving resources and adapting to changing conditions. [Sources: 1, 2]    Solution: Predictive analytics tools were used to analyze historical climate data, soil quality, and crop performance. Using machine-learning algorithms, these tools forecasted ideal planting times and crop varieties as well as recommended precise irrigation schedules. By relying on data-driven decisions, farmers were able to enhance productivity, conserve water, and reduce the environmental footprint of their operations.  
Hurricane Tracking and Preparedness
Issue: Coastal communities were grappling with the increasing frequency and intensity of hurricanes, which necessitated better preparation and response strategies. [Sources: 1, 2]  Solution: Predictive analytics models were developed to track and predict hurricane paths and intensities. These models integrated data from satellites, weather stations, and historical hurricane data. The predictive analytics system provided more accurate forecasts, allowing authorities to issue timely evacuation orders, prepare emergency shelters, and allocate resources effectively. This resulted in improved safety for vulnerable communities during hurricane events.
Climate-Resilient Urban Planning
Issue: Urban areas were facing the dual challenge of population growth and climate change, leading to increased vulnerability to extreme weather events and flooding. [Sources: 1, 2]Solution: Predictive analytics played a pivotal role in urban planning. By analyzing climate data and topography, predictive models identified flood-prone areas and forecasted future vulnerabilities. Urban planners used this information to make informed decisions about infrastructure development, flood defenses, and emergency response plans. This proactive approach ensured that cities were better equipped to handle extreme weather events and protect their citizens.

From I, Robot to AIFARMS; AI Robotics for Sustainable Farming

By Sasha Zvenigorodsky

The movie I, Robot came out in 2004, telling the story of a society in which a population of highly intelligent robots that worked public service positions to keep people safe became part of a dangerous conspiracy to enslave the human race. This fantastical, futuristic robot theme is one that was quite popular throughout the early 2000’s. While watching movie star Will Smith conquer a dangerous robot regime on the big screen, it may have been difficult to imagine the ways in which robotics could be a realistic and helpful addition to society in the near future.

Today, robots regularly roam a plot of farmland in Urbana, Illinois. This plot of farmland is used by the Artificial Intelligence for Future Agricultural Resilience, Management, and Sustainability (AIFARMS) Institute. AIFARMS brings together researchers studying both artificial intelligence and agriculture. Core research areas at AIFARMS include computer vision, data science, machine learning and human-robot interactions. Their mission is to use these areas of research to address major challenges in agriculture, and fulfill important societal needs.

“Current agriculture production relies on unstainable labor needs, soil degeneration, herbicide/pesticide resistance, nitrogen runoff, greenhouse gas emissions, and animal welfare concerns,” says Jessica Wedow, AIFARMS executive director. “These critical challenges are difficult to tackle with human capacity and conventional technologies alone.”

Currently, AIFARMS is working on four different research projects. One of these projects involves the design and development of an AI-driven farm. The purpose of this project would be to alleviate the agricultural labor crisis and encourage sustainable crop management practices using teams of small, intelligent robots called agbots.

The US agriculture industry has faced widespread farmworker shortage over the years, due to dwindling rural populations and declining interest in agricultural employment. Farmers have been forced to find innovative ways to adapt, such as the implementation of agricultural technology. With the AIFARMS agbots, tedious agricultural duties like harvesting and scouting fields no longer need to be performed by farmworkers and can be fulfilled by the robots instead.

Sustainable crop management practices are also a major plus of the AIFARMS research projects. With a growing population and limited land and water, increasing the efficiency of the farming industry has been a very important societal goal. By using AI-driven farming techniques, the need for unsustainable standard farming practices decreases. For example, farmers can use agbots to weed plants beneath the crop canopy, instead of applying herbicides that are harmful to the environment.

In addition to different research projects, AIFARMS hosts a variety of education and outreach programs. These programs contribute to meaningful efforts to inspire the younger generation to explore digital agriculture and grow a skilled workforce.

As the agricultural community faces new challenges due to a fluctuating climate and growing global population, research within digital agriculture is becoming an increasingly important part of the solution.

Get Involved

Interested in learning more about this work? The AIFARMS annual conference will be held on September 7, 2023, in Urbana, Illinois, at the National Center for Supercomputing Applications (NCSA).

Additionally, the Center for Digital Agriculture at the University of Illinois at Urbana-Champaign, Center for Research on Programmable Plant Systems (CROPPS), and PhenoRob are organizing a full-day “Workshop on Agricultural Robotics for a Sustainable Future” at the IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS) 2023. This workshop will take place on October 1, 2023, from 9:00 a.m.–5:00 p.m. ET, in Detroit, Michigan. Researchers working in different areas of Agricultural Robotics and Precision Agriculture are invited to submit their work as abstracts to be considered for poster presentations and lightning talks.

Contact the Midwest Big Data Innovation Hub if you’re aware of other agriculture- or food-related people or projects we should profile here, or to participate in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

Cultivating Change: Finding Answers with Sustainable Urban Farming

By Sasha Zvenigorodsky

2019 USDA Food Access Research Atlas, showing the frequency of food deserts throughout the Midwest. The atlas indicates areas where a significant number of residents live more than 1 mile (urban) or 10 miles (rural) from the nearest supermarket.
USDA Food Access Research Atlas, 2019
Low-income census tracts where a significant number or share of residents is more than 1 mile (urban) or 10 miles (rural) from the nearest supermarket.

Most individuals native to Illinois would be shocked to hear that thousands of its residents reside in areas that are considered to be deserts. Not literal deserts, but rather food deserts, urban areas in which it is difficult to buy good-quality or affordable food. Although food deserts aren’t covered by dry sand and hot sun, both types of “deserts” have one glaring similarity: hostile living conditions due to lack of food resources. The 2019 USDA Food Access Research Atlas (at right) demonstrates the frequency of food deserts throughout the Midwest, indicating areas where a significant number of residents live more than 1 mile (urban) or 10 miles (rural) from the nearest supermarket. As food accessibility issues are exacerbated by climate change, these food deserts have the potential to grow even more expansive.

The Midwest Climate Summit concluded in late February, a three-day event hosted by the Midwest Climate Collaborative (MCC; led from Washington University in St. Louis), with the purpose of gathering climate leaders, researchers, and other interested parties to address the escalating issue of climate change and promote new partnerships and collaborations. The Summit hosted multiple speakers and workshops, with topics ranging from agroforestry and silviculture to designing a circular economy.

All these topics have the same main goal: addressing climate change. Here, we explore one session that highlighted the critical impacts of climate change on food accessibility within Illinois. As global warming brings on intense weather fluctuations throughout the United States, standard agricultural practices are jeopardized and traditional farmers are thrown into uncertainty. Without solutions to this issue, food deserts throughout urban areas are likely to expand.

Hosting a panel that included a small regenerative farm, a family orchard, and a beekeeper, the Midwest Climate Summit introduced just that: solutions—specifically, the concept of urban farming.

Urban farming entails both the cultivation and distribution of agricultural products within urban and suburban areas. Hydroponic/aquaponic facilities, community gardens, and rooftop farms are all examples of urban farming. These methods have excellent potential to provide healthy, fresh foods to underserved areas with limited nutritional access. They also address climate change in big ways. For example, various urban-farming methods can utilize less water, less light, and less soil than traditional farming can, proving to be more sustainable and climate-friendly.

The ability to educate and raise awareness on issues like climate change and food insecurity is a big reason why panels like the Midwest Climate Summit are so important. Nonetheless, they are often missing an important target audience: children. Promoting the importance of local urban food systems to school-age children can be the key to establishing more sustainable and environmentally friendly communities over time.

This is demonstrated perfectly by the Gardeneers organization of AmeriCorps. AmeriCorps is an independent agency of the United States government that engages Americans in service positions through stipended volunteer work organizations. One such organization, called Gardeneers, involves urban-farming education targeted towards underprivileged children living in urban food deserts within Chicago. Their mission is to help create a more equitable food system with the help of specialized school garden and farm programs within Chicago’s South and Westside schools. These programs can equip kids with the proper knowledge and skills to positively contribute to the environment and their communities.

“Climate change leaves these kids facing an uncertain future,” says Galina Fesseler, Gardeneers volunteer. “Educating kids about food accessibility and urban farming is a great way to invest in their health and development.”

Food is just one dimension of the larger impact that climate has on a region. Other sessions at the Midwest Climate Summit addressed related topics, such as water and health, which affect people in communities, and shared a wealth of information and resources that communities can use to help with climate resilience.

In collaboration with the MBDH, the MCC developed a prototype Climate Asset Map (CAM), which is an online interface that will help groups from different disciplines and sectors to access and contribute to climate-action information throughout the Midwest, such as information surrounding urban farming. The MCC received feedback from across the Midwest to a survey about information needs that researchers, practitioners, government agencies, and community groups have around climate-related resources. This informed the development of the CAM prototype, which was presented at the Summit for attendees to explore. The model was then refined and has just launched as the Midwest Climate Resource Network (CRN).

Urban farming is just one small example of the many ways to address climate change, hence the need for the CRN. With the help of this resource, organizations like Gardeneers can be interconnected with other groups throughout the Midwest, allowing for collaboration and collective success within the various realms of climate work.

Get Involved

Contact the MBDH if you’re aware of other agriculture- or food-related people or projects we should profile here, or to participate in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

New NSF Awards to Accelerate Food and Nutrition Security

By Aisha Tepede

Since 1951, the National Science Foundation (NSF) has been awarding academic institutions across the U.S. the opportunity to develop research projects. More recently, the Foundation has taken a new approach to build upon basic research and discovery to accelerate solutions toward societal impact.

The NSF’s Convergence Accelerator program enables universities and nonacademic institutions to develop solutions to address societal challenges through convergence research and innovation within a collaborative and multidisciplinary effort. This takes the form of themed “tracks,” focused on particular challenges, which are defined through a community-input process. A recent track on Food and Nutrition Security led to several awards for projects involving data use in sustainable agriculture, specifically around food supply chains to build resilience to climate change and natural hazards, using digital tools for agriculture and food, and seeing how food security, equity, health, and environmental justice innovations positively impact local communities.

With the lack of consistent access to enough food for individuals living in a household growing each year, several universities have chosen to create innovative and tangible solutions to minimize the burden it holds on many members of society. Throughout the USA, socially disadvantaged neighborhoods struggle with finding sustainable solutions for food and nutrition security. Some reasons include that lack of access to food varies greatly between communities and that there are climate issues such as communities that are at risk for hurricanes and other natural disasters. Universities such as the University of Arkansas at Pine Bluff and University of Maryland, Baltimore County are creating solutions to reduce disaster-induced food and nutrition insecurity and improve health outcomes among underserved and minority communities.

The push for decreasing food insecurity has opened an arena for new and innovative digitals to be created. Institutes such as George Mason University and the University of Houston are focusing on and creating progressive data-driven systems that assist in crop management to increase US agricultural production as well as health issues that plague disadvantaged communities by building locally oriented food-charity ecosystems that incorporate culturally aware food distribution to community members. Virginia Tech Applied Research Corporation also seeks to increase vegetable production capacity by developing climate-smart technology sustainable for precision agricultural practices that allow for effective and adaptive decision-making.

Along with food insecurity plaguing many communities, issues surrounding environmental justice and climate change have risen over time. Schools such as the University of California–Santa Barbara and Pratt Institute have projects that predict the ability to collaborate with stakeholders along the food system to develop actionable models tailored to their needs and decision-point and development projects that benefit agriculture and soil health on land. These projects aim to understand and anticipate the vulnerability of the global food system to predictable climate shocks.

To see a more in-depth description of each research project being held at various universities across the USA, see the table below.

Although the awardees each have different approaches and scopes of community improvement, there is a shared interest in synergizing work through facilitated collaboration to cultivate improved situations of development for underrepresented and underserved rural populations. The Midwest Big Data Innovation Hub (MDBH) provides a venue for outreach and engagement that increases the potential for benefitting society and the themes seen with the institution’s awards. Collaborations with MDBH foster the use of data in sustainable agriculture, including around food supply chains to build resilience to climate change and natural hazards. One example is the “Enabling a Smart and Equitable Agriculture Ecosystem” working group that the MBDH co-leads. These and other activities address impacts on local communities, including food security, equity, health, and environmental justice.

Get Involved

Contact the Midwest Big Data Innovation Hub if you’re aware of other agriculture- or food-related people or projects we should profile here, or to participate in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

NSF Convergence Accelerator Track J Awards for Food and Nutrition Security

Aqua Sacs for Sustainable Agriculture in a Changing Climate (Pratt Institute)This project aims to understand and develop the industrialization steps required to produce Aqua Sac at a commercial scale.
Artificial-Intelligence-Based Decision Support for Equitable Food and Nutrition Security in the Houston Area (University of Houston)This project brings together civic collaborators with university researchers to develop and build a locally oriented food-charity ecosystem based on data-driven smart technologies in the Greater Houston region.
Building a digital twin for national-scale field-level crop monitoring, prediction, and decision support (George Mason University)This project aims to ensure food and nutrition security by enhancing crop productivity and reducing environmental footprint in the USA through wide adoption of the data-driven approach enabled by CSDT, which is a CropSmart Digital Twin that accurately represents the current conditions and predicts future-crop cropping systems.
Convergence Towards a Disaster Resilient Food System (University of Maryland Baltimore County)This project aims to create a Food Index for Resilience, Security, & Tangible Solutions (FIRST) that measures food system functioning. The FIRST will provide a tool for communities preparing for, responding to, and recovering from disasters and environmental change.
Data-driven Agriculture to Bridge Small Farms to Regional Food Supply Chains (University of Arkansas)This project advances the health and prosperity of the United States’ population, as well as environmental stewardship, through its focus on food and nutrition security.
Food EducatioN for Nutritional security and Empowerment in Local communities (FENNEL) (University of Arkansas at Pine Bluff)The project involves a robust set of activities to engage local communities in addressing nutritional insecurity through an educational and outreach-tailored approach to address community needs.
Food, Land, Water Environmental Open-Source Risk Intelligence Synthesis Model (FLOWER-ISM) (Mesur.io)The project aims to involve technological advances and assistance to areas of focus surrounding identifying risks for conflict, water shortage, and food availability to ensure access to food is met for all citizens.
MidAtlantic Food Resiliency Network: Securing the Future of Food through a Multi-Mindset Approach (University of Maryland, College Park)This project focuses on the use of surveys, focus groups, a digital tool kit, and technology to address the complex and interconnected challenges of nutritional and food security.
Network Of User-engaged Researchers building Interdisciplinary Scientific infrastructures for Healthy food (NOURISH) (University of California–San Francisco)This project aims to solve the problem of food swamps by equipping responsible business entrepreneurs situated within these communities with data and information for developing and marketing healthy, sustainable foods.
Precision Agriculture for a Resilient Vegetable Supply Amidst Climate Change (Precision Ag4Veggie) (Virginia Tech Applied Research Corporation)This project aims to increase vegetable production capacity throughout the USA by developing climate-smart, technologically and economically efficient, and environmentally sustainable precision-agricultural practices that enable more effective and adaptive decision-making.
Predicting the effect of climate extremes on the food system to improve resilience of global and local food security (University of California–Santa Barbara)This project aims to help identify drivers of hunger that are relevant in different settings within developing and developed countries in hopes of facilitating the development of protocols for decision-maker coproduction of models.
Rapid detection technologies and decision-support systems to mitigate food supply chain threats (University of Missouri–Columbia)This project aims to provide research and training opportunities for students to learn about the convergence-science approaches at the intersection of food science, public health, animal sciences, data science, and sensing technology as well as integrating multiple innovative features of an impedance-based biosensor.

New working group focused on interoperability of agricultural data

By Sasha Zvenigorodsky

In the face of increasingly challenging climate issues and an ever-growing population, digitization has played a large role in agriculture improvement throughout the years. Innovative technologies such as robotic systems, moisture and temperature sensors, and semiautonomous aviation systems have all revolutionized standard agriculture practices. Consequently, the increase in digital agriculture has led to an increase in various supply chain data needs and has also raised several questions about data interoperability. Organized and effective data exchange between agricultural information systems is crucial to allow the agriculture community to reap the benefits of digitalization.

A new digital agriculture interoperability working group believes that understanding agricultural supply chain data needs will benefit both farmers and large agribusiness corporations alike. The group, co-led by the Midwest Big Data Innovation Hub (MBDH) and the Illinois AgTech Accelerator, in partnership with the IEEE Standards Association, plans to identify interoperability issues caused by the flood of information produced by new agricultural technologies. The group’s goals include creating new proposals for data provider standards and certificates, as well as making recommendations for the best practices that will help increase collaboration surrounding agricultural data collection and management.

“The MBDH is happy to be co-leading this working group with our partners,” said John MacMullen, MBDH Executive Director. “The MBDH Digital Agriculture community has been a leader in exploring the challenges and opportunities of data in agriculture, particularly with sensors and autonomous vehicles. With this partnership, we are expanding the reach to cross-sector collaborators across the ag-food supply chain.”

On December 5, 2022, the group hosted a kickoff webinar on Integrative Smart Agriculture Data to address challenges within data protection and interoperability. The webinar was designed to facilitate productive conversations and idea sharing that can help lead to potential solutions to previously mentioned challenges.

Throughout the upcoming year, the group will continue to host various activities regarding digital agriculture. The next working group meeting will be February 7, 2023, at 10 a.m. CT (online).

The working group welcomes participants from academia, industry, and government agencies that are interested in smart agriculture. Visit the group’s web page to learn more. To join the group and attend meetings, an inquiry can be sent to IEEESmartAg-Info@ieee.org.

Get Involved

Contact the Midwest Big Data Innovation Hub if you’re aware of other people or projects we should profile here, or to participate in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities. The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

Unmanned Aerial Systems, Plant Sciences and Education (UASPSE) Project Featured in Special Section of Agronomy Journal

The Digital Agriculture community of the Midwest Big Data Innovation Hub (MBDH) achieved a major milestone this week with a series of open-access publications on ag data.

The Unmanned Aerial Systems, Plant Sciences and Education (UASPSE) project, funded by an award from the National Science Foundation’s Big Data Spokes program (NSF award 1636865), wrapped up its activities this month with the publication of nine open-access articles in the September/October 2022 issue of Agronomy Journal under the Special Section: Big Data Promises and Obstacles: Agricultural Data Ownership and Privacy (BDPO).

Special Section topics include:

Two long-time MBDH team members played important roles in producing the special section: MBDH Site Coordinator Aaron Bergstrom, PI on the UASPSE project and Advanced Cyberinfrastructure Manager at the University of North Dakota; and Jim Wilgenbusch, Co-PI on the MBDH award and Director of Research Computing at the University of Minnesota.

The BDPO special section consists of a series of articles based on presentations given at the June 24, 2020, Virtual Workshop on Big Data Promises and Obstacles: Agricultural Data Ownership and Privacy. The Digital Agriculture: UASPSE Spoke project of the MBDH, together with the University of Minnesota College of Food, Agricultural and Natural Resources Sciences and PepsiCo, hosted the workshop, which focused on data ownership and privacy as it relates to academic and industry research and development in agriculture. The workshop was originally scheduled to be co-located at the US Agricultural Information Network (USAIN) Biennial Annual Meeting that was to be held in Lubbock, Texas, on May 1, 2020. However, the COVID-19 pandemic caused the in-person USAIN meeting to be postponed. The BDPO workshop organizers then decided to host the BDPO workshop separately as a virtual workshop in June of that year via Zoom.

A total of 210 persons registered for the virtual workshop. While many attendees came and left throughout the day, the maximum attendee count during the event reached 142 active attendees. Because the event was virtual and the speakers represented groups with an international presence, there were attendees from North America, Europe, Africa, Asia, and Australia.

In addition to 11 invited presentations, two breakout discussion sessions were held on topics chosen based on the 117 responses to the pre-workshop survey. A short post-workshop survey was conducted as well, with 116 respondents, to gather data on breakout sessions in which the attendees participated.

The 11 virtual workshop presentations are available via YouTube.

Get Involved

Interested in ag data? The Midwest Big Data Innovation Hub (MBDH) co-leads a new working group sponsored by the Institute of Electrical and Electronics Engineers Standards Association (IEEE SA) to understand agricultural data needs across the food supply chain. Join the kickoff workshop on December 5, 2022, in Champaign, Illinois.

Contact the MBDH to learn more, or if you’re aware of other people or projects we should profile here. We invite participation in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

New Precision Agriculture Initiatives in the Midwest

By Raleigh Butler

Recently, there has been a large amount of U.S. federal funding directed toward next-generation precision-agriculture initiatives. This article summarizes a few such projects based in the Midwest.

I-FARM

A new project called I-FARM was recently awarded funding by the USDA’s National Institute of Food and Agriculture (NIFA) in May 2022 under the “Farm of the Future” program. The Illinois Farming and Regenerative Management project will focus on sustainability in farming practices. I-FARM, led from the University of Illinois, is a collaborative study across the Institute for Sustainability, Energy, and Environment (iSEE) and the Center for Digital Agriculture (CDA), which is based at the National Center for Supercomputing Applications (NCSA). The project, funded with $3.9 million in grant money, is planned to last three years. For this very competitive program, only one project across the nation received funding.

According to the NIFA website, “The Farm of the Future Program integrates advances in precision agriculture, smart automation, resilient agricultural practices, socioeconomics, and plant and animal performance.”

The I-FARM project will focus on bettering these aspects of agriculture. Of course, as the world changes due to climate change and pollution, sustainability is an area of increasing concern. “Together, this integrated suite of solutions will lead to sustainable ways of meeting growing demand for agriculture in a changing climate,” said Co-PI and iSEE Interim Director Madhu Khanna, the Distinguished Professor of Agricultural & Consumer Economics at the University of Illinois.

I-FARM was seed-funded by iSEE’s “Campus as a Living Laboratory” program and now has received the grant from USDA NIFA. During the three years, the 80-acre I-FARM test bed “will feature improved precision farming with remote sensing; new under-canopy autonomous robotic solutions for cover-crop planting, variable-rate input applications, and mechanical weeding; and artificial intelligence-enabled remote sensing for animal health prediction, nutrient quantification, and soil health.”

AIFARMS

Other recently funded projects focus on leveraging artificial intelligence (AI) to benefit agricultural research and translations of this work to impact practitioners and communities. One project is AIFARMS, or “Artificial Intelligence for Future Agricultural Resilience, Management, and Sustainability.” Led by PI Vikram Adve in the Center for Digital Agriculture at the National Center for Supercomputing Applications, AIFARMS “covers autonomous farming, efficiency for livestock operations, environmental resilience, soil health, and technology adoption.”

ICICLE

The ICICLE project combines elements similar to those of both I-FARM and AIFARMS. Led by The Ohio State University (OSU), the institute’s acronym stands for “Intelligent Cyberinfrastructure with Computational Learning in the Environment.” The project will integrate AI (like AIFARMS) but focus primarily on crops and soil. It will use technology such as field sensors to help maximize agricultural production. According to an OSU article, “The institute (led by Dhabaleswar K. Panda) will build the next generation of cyberinfrastructure with a goal of making AI data and infrastructure more accessible to the larger society.”

AIIRA

AIFARMS, ICICLE, and a third project, AIIRA, were all funded under the NSF AI Institutes program, which includes a partnership with the USDA’s National Institute of Food and Agriculture (NIFA), which is providing the funding for the AIIRA project. AIIRA is the “AI Institute for Resilient Agriculture,” and includes stakeholders from academia, government, and industry. Led by PI Baskar Ganapathysubramanian from Iowa State University, the project has a vision “to create new AI-driven, predictive digital twins for modeling plants, and deploy them to increase the resiliency of the nation’s agricultural systems.”

All of these projects demonstrate high interest across sectors in precision-agriculture innovations that can make the transition from academic research labs and demonstration projects to deployment at scale for agricultural production that can meet the country’s changing needs.

Get Involved

The Midwest Big Data Innovation Hub (MBDH) co-leads a new working group sponsored by the Institute of Electrical and Electronics Engineers Standards Association (IEEE SA) to understand agricultural data needs across the food supply chain.

Contact the Midwest Big Data Innovation Hub to learn more, or if you’re aware of other people or projects we should profile here. We invite participation in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

Building an accessible agricultural data community with the National Agricultural Producers Data Cooperative

By Raleigh Butler

Romaine lettuce crop grown on a city farm in Moscow. Photo by Petr Magera.
Photo by Petr Magera/Unsplash

Entities around the world gather data focused on various aspects of agriculture. Unfortunately, this information is not always accessible or easily available for those who need it. The National Agricultural Producers Data Cooperative (NAPDC) project recognizes that agriculture is a keystone of society and a critical piece of national solutions to climate-related challenges. The NAPDC, with support from the United States Department of Agriculture (USDA), aims to enable agricultural producers to benefit from the massive amounts of data generated by members of their community. As the NAPDC site states, the goal of the project is to create a “blueprint” for a national data framework where agricultural entities “can store and share data . . . to maximize their production and profitability.”

With enough available data and methods to extract relevant information, national agricultural systems can become more efficient and profitable. The framework being developed by the NAPDC will include data from many types of agricultural contexts and agricultural institutions, first and foremost the producers that drive agricultural productivity. Making the system diverse yet robust while safeguarding farmer privacy will result in a more reliable set of data for the entire agricultural community.

The NAPDC project emphasizes providing resources to community partners through webinars and seed grants in order to “identify needs and opportunities as well as challenges in physical infrastructure, education and human resources, and critical use cases” critical to the success of a future data framework. The project recognizes that a secure framework is necessary to protect privacy and governance information; these aspects will be carefully considered. The project also recognizes the importance of land-grant institutions and agricultural extension in the successful deployment of any framework.

The NAPDC project has a seed grant program to support development of community activities, with a deadline of June 1, 2022. It will be granting 4–6 awards; complete guidelines are listed on the site here. The grants will not be limited to principal investigators at universities; rather, any institution eligible for USDA funding may apply. As stated on the website, “individuals willing and qualified to lead representation for a national or regional agroecosystem are encouraged to apply.”

“The work of the NAPDC aligns well with the Digital Agriculture community of the Midwest Big Data Innovation Hub,” said MBDH Executive Director John MacMullen. “We anticipate integrating findings from our Community Data Needs Assessment (Community DNA) activities, which are helping to understand the data needs of stakeholders across the food supply chain, with the work of the NAPDC. We also look forward to partnering with the NAPDC team on our agricultural data work with the IEEE Standards Association and other partners.”

Jennifer Clarke, lead PI of the NAPDC project and faculty at the University of Nebraska–Lincoln, hopes the project serves as an initial step towards a national framework. “This project represents the willingness of the USDA to listen to agricultural producers and support the data needs of producer communities,” said Dr. Clarke. “This project provides producers and stakeholders with a vehicle for communicating their challenges related to data, and provides educators and researchers with a vehicle for proposing solutions to these challenges.”

The NAPDC will host an All-Hands Meeting in the spring of 2023 at the University of Nebraska–Lincoln that will highlight the work of the NAPDC and discussions of specific areas for future USDA investment. Interested members of the community can sign up for the project listserv through the project website (https://www.agdatacoop.org/) to receive updates about this meeting as well as project information.

Get involved

Do you have an agricultural data success story or case study to share from your organization? Contact the Midwest Big Data Innovation Hub if you’re aware of other people or projects we should profile here. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

New MBDH Community Development and Engagement partners

By Qining Wang

The Midwest Big Data Innovation Hub (MBDH) recently partnered with multiple institutions in the region for new data science activities under its Community Development and Engagement Program. This program incubates new projects and provides support to help them grow.

In the last proposal cycle, the MBDH Seed Fund Steering Committee selected three projects to support, led by the Tribal Nations Research Group (TNRG), St. Catherine University, and Trinity Christian College.

TNRG Digital Agriculture Meeting

The TNRG, together with the University of North Dakota and Grand Farm/Emerging Prairie, will host a one-day workshop in 2022, at the Microsoft Business Center in Fargo, North Dakota. This workshop will connect tribal colleges and universities working with their local tribal governments to extend digital agriculture and educational opportunities to Native farmers.

Approximately 30% of the nation’s Native population and 20 of the 37 of the nation’s tribal colleges and universities are located in the MBDH service area. Because of this, the MBDH is well-positioned to engage tribal stakeholders on issues related to Data Science Education and Workforce Development. This is especially true in the context of Digital Agriculture, where many of these institutions are working with their local tribal governments to extend agricultural programs and educational opportunities to Native farmers.

Tribal communities have not had the dedicated capital for building a resilient and sustainable infrastructure for harnessing food on their lands for a long time. The lack of such infrastructure creates food insecurity that can be detrimental to Indigenous peoples. In addition, due to climate change, it is crucial to build sustainable farming practices that can provide sufficient food and preserve the ecosystem everywhere in the long run.

One way to realize optimal farming practices is to incorporate digital agriculture, which integrates digital technologies into crops and livestock management. Technologies such as machine learning and big data analysis tools can improve agricultural production while minimizing the harm to the ecosystem. For instance, by correlating multiple parameters related to crop growth using machine learning, farmers can better predict crop yield based on other parameters such as nutrients in the soil, weather, and fertilization. Those technologies can therefore make information on ecosystems, crops, and animals more findable and interpretable to farmers.

However, implementing digital agriculture on tribal lands involves extra layers of nuance. Data scientists and agricultural experts must conduct digital agriculture research in tribal regions under proper data sovereignty standards, such as the CARE Principles for Indigenous Data Governance. Indigenous peoples are entitled to know what data is collected and how data scientists use and analyze their data. The data should enable Indigenous peoples to derive benefit from any fruits of the research involving tribal communities.

This workshop will serve to increase the accessibility of digital agriculture in Native communities, emphasizing respecting the culture, traditions, and sovereignty of the Native people. In addition, this workshop will enlist more tribal stakeholders nationwide for broader engagement in digital agriculture, potentially developing a Data Science Workforce Development and Education proposal for Native communities. Anita Frederick, the President of TNRG, will lead this workshop and present the importance of Data Management and Data Sovereignty.

“Outreach to Indian tribes is often difficult for non-tribal entities and individuals,” Frederick said. “As a direct result, tribal populations are often left out of initiatives that could help to address some of the economic, health, and other societal conditions that tribes face. Clearly, American Indian citizens must have access to the opportunities envisioned in the Big Data Revolution. The proposed project is a first step in helping to close the growing Big Data gap that is emerging between Indian country and the rest of the nation.”

St. Catherine Data Science Boot Camp

MBDH will also support a data science program “created by women for women” at St. Catherine University (aka St. Kate’s), one of the USA’s largest private women’s universities, located in St. Paul, Minnesota. This program aims to cultivate a new generation of women and historically underrepresented data scientists. In addition to teaching data science and data analytic principles, this program will also raise students’ awareness of using data science in ethically, socially, and environmentally just ways.

Introduced in the fall semester of 2018, the data science program at St. Kate’s reaches both current and prospective students of the University. Monica Brown, the Mary T. Hill Director of Data Science at St. Kate’s, will lead the program’s two initiatives in 2021-2022. Working alongside her colleagues at St. Kate’s for over 13 years, Brown aspires to make data science and data analytics principles accessible to every student in the St. Kate’s community.

Brown will launch a one-week Data Science Boot Camp in the summer of 2022. This boot camp will provide hands-on coding experience to middle- and high-school students, particularly those historically excluded from data science. In addition, Brown will invite data science professionals to speak about future career opportunities. Overall, this program aims to enable younger students to envision themselves as future data scientists and to elicit their passion for coding and data science. The lessons learned organizing this event will be shared with others who wish to do so with their own student populations.

“St. Kate’s is grateful for the partnership with MBDH towards the support of a boot camp,” said Brown. “We very much look forward to bringing younger students onto our campus to encourage and empower them through data science activities.”

Trinity Data Science for Social Good Workshop

The third project to be incubated under the MBDH’s Community Development and Engagement program will be an annual workshop and conference on Teaching with Data for Social Good (DSG) in summer 2022. DSG addresses the importance of teaching data science for positive social impact, and this conference serves as an opportunity that encourages teaching faculty to include DSG in their curricula proactively.

Trinity Christian College, a faith-based institution located on the outskirts of Chicago, will host this meeting. The workshop chair will be Dr. Karl Schmitt, an assistant professor in the Data Analytics department at Trinity and the coordinator of the Data Analytics program.

The meeting format resembles that of regional professional society meetings, consisting of a workshop, keynotes, and contributed talks. To provide more practical assistance to teaching faculty incorporating DSG, faculty will directly generate teaching materials that include DSG in the primary workshop sessions. Additionally, faculty will also have a chance to practice teaching DSG by actively advising student teams participating in a colocated datathon. In this student competition, student teams will use data science to solve practical problems.

“An important component of increasing persistence and success for our current generation of students is connecting their coursework to meaningful change or outcomes,” Schmitt said. “Through the Workshop on Data for Good in Education, the MBDH will be supporting faculty in developing their teaching to better incorporate the Data for Social Good (DSG) movement. This provides a natural connection to relevance with grass-roots level improvements in our society while promoting the broad applicability of data science.”

Beyond these outcomes, Schmitt said, “the workshop will be a professional development opportunity for all instructors seeking to more deeply engage their students through meaningful social good projects within a classroom setting. It will inspire, educate, and most importantly, allow faculty the chance to share, and prepare, materials for use within their own teaching context.”

Get involved

Learn more about other Community Development and Engagement partnerships, and contact the MBDH if you have an idea for a project to help build the data science community in the Midwest.

Contact the Midwest Big Data Innovation Hub if you’re aware of other people or projects we should profile here, or to participate in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

Agroterrorism: Cybersecurity Incidents Affect Agriculture and Water

By Raleigh Butler

You may not think that agriculture and cybersecurity, both themes of the Midwest Big Data Innovation Hub, are linked, but recent events demonstrate there are connections between the two that pose risks to our food security.

The “food and agriculture” industry is publicly defined as a critical infrastructure sector by the U.S. Department of Homeland Security. The Cybersecurity & Infrastructure Security Agency (CISA) states that food and agriculture is one of sixteen essential critical infrastructure sectors that provide “the essential services that underpin American society and serve as the backbone of our nation’s economy, security, and health. We know it as the power we use in our homes, the water we drink, the transportation that moves us, and the communication systems we rely on to stay in touch with friends and family.” Those statements highlight the urgency of building robust cyberinfrastructure to prevent massive disruptions to crucial public services.

A recent cyberattack targeting an Iowa-based agriculture company called New Cooperative illustrates the severity and consequences of those incidences. The group claiming responsibility—BlackMatter—deals in blackmail, Reuters reports. The hackers from BlackMatter locked New Cooperative’s access to data that support the food supply chains and detail the feeding schedule of the livestock. In order to get access to the decryption key for its data and reinstate their farming activities, New Cooperative was ordered to pay $5.9 million.

As Bobby J. Martens, an associate professor of Economics at Iowa State University was quoted as saying, “This event wasn’t long enough to cause a change in the commodity price, but certainly it will have ramifications in terms of the food supply system. If they do it to this company, they could do it to one of the majors. They can block the food chain. They attacked in the heartland of all agriculture. It’s a new form of terrorism.”

Regardless of the source, and whether it is purposeful or accidental, a failure in any other critical sector could be life threatening for US citizens. For example, Water and Wastewater Systems is a related sector on CISA’s list, and in fact, water system attacks did occur early in 2020, the most prominent being the Oldsmar, Florida attack of February 16. While the breach nearly allowed a mass poisoning to occur, the mayor viewed the event as a “success.” According to ProPublica, cybersecurity experts view the breach not as a success, but instead as a “frightening near-miss.” Retired Admiral Mark Montgomery, a panelist on the MBDH Water Data Forum webinar on water and cybersecurity in May 2021, was quoted as saying, “Frankly, they got very lucky. They averted a disaster through a lot of good fortune.”

Nontechnical companies are extremely vulnerable to cyberattacks. According to the 2020 state of ransomware report, manufacturing, government, services, and healthcare are among the top sectors prone to cyberattacks. This link leads to this report from a company called BlackFog, a leading company in ransomware protection.

Moving forward, it is possible for businesses and governmental sectors to make cybersecurity an integral part of their practices. Even seemingly trivial data maintenance, such as regularly backing up data in multiple storage devices and encrypting data during transfer, can improve data security in the long run. The key is to operate under the mindset of protecting data and to be more intentional about data protection at any point. The U.S. National Institute of Standards and Technology (NIST) and CISA developed the NIST Cybersecurity Framework, a comprehensive approach to security for critical infrastructure, and there are subsets of that work to support small businesses and other organizations with cybersecurity risks that may not have extensive resources.

On the management level, designated information security officers can build more secure databases and data management systems. The information security officers can also perform routine testing for weaknesses in the existing systems. They could also work with the risk managers to develop preventative measures in case of cyberattacks. Other preventive measures include purchasing cyber insurance.

An additional benefit of developing systems for monitoring and collecting data is the ability to assess the impact of other external events. We previously published a story on how researchers were assessing the spread of COVID-19 by examining the relative levels of the virus in wastewater systems. Since many infrastructure systems, such as agriculture, water, and food, are an interconnected web of dependencies, threats to one can have cascading impacts across others. For academic organizations that manage research data repositories, the MBDH and its partners developed a guidance document on data security for open science, through our Trustworthy Data Working Group.

Get involved

Do you have a cybersecurity success story or case study to share from your organization? Contact the Midwest Big Data Innovation Hub if you’re aware of other people or projects we should profile here, or to participate in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

Climate Change Affecting Crops in Iowa

By Raleigh Butler

In 2010, the University of Minnesota received a grant from the National Science Foundation to study climate change using data-driven methods. The project included Midwest Big Data Innovation Hub co-PI Shashi Shekhar and a team of researchers from across the country. The research led, in part, to explorations of connections between food, energy, water, and climate change.

Because greenhouse gases contribute heavily to climate change, activities that contribute to their release are becoming more divisive with time. There’s no doubt that the food we eat is becoming an increasingly political statement. According to the 2019 Environmental Protection Agency report, agriculture was responsible for 10% of all greenhouse gas emissions, amounting to 650 million metric tons of CO2. A quarter of those emissions (about 2.5% of all greenhouse gas emissions) come from livestock before they are butchered.

The Coupled Model Intercomparison Project 3, a project of the World Climate Research Programme, predicts when the global average temperature will increase by 2°C. The approximately 0.75°C increase in temperature since 1950 has caused a huge increase in natural disasters. This can be seen by an increase in hurricanes, such as Katrina, and the melting of the polar ice caps, among other issues.

According to the graphic from their report, the global average temperature has already increased by about 1°C (1.8°F) relative to preindustrial levels, and will continue rising to as much as 7°C in some regions by the end of the century.

Climate change is the culprit behind many natural disasters, as more than 170 scientific reports covering 190 extreme-weather events found that around two-thirds of extreme-weather events likely originated from, or were exacerbated by, anthropogenic hazards.

How does this apply to the Midwest? Let’s look at Iowa, where over 90% of its land is used for agriculture. In recent years, extreme-weather events have wreaked havoc on crops.

2020: Inland Hurricanes

Farmers and agricultural specialists were worried in August 2020 when portions of Iowa experienced derechos. Pronounced deRAYchos, these are widespread, long-lived thunderstorms mixed with 100–130 mph winds. According to the National Weather Service, a derecho like this was “a roughly once-in-a-decade occurrence” in the Midwest.

These immensely strong storms destroyed crops and decreased crop output for the season in Iowa. According to the power-outage map published by the University of Wisconsin–Madison’s Cooperative Institute for Meteorological Satellite Studies (CIMSS) below, A quarter of the counties in Iowa caught the worst of the storm. All the affected counties were in the central-east portion of the state.

2021: Drought

There were high hopes that 2021 would bring a better crop return. However, when agricultural scouts crossed Iowa in mid August, they found that the state was suffering from extreme drought.

Although derechos and rain-damaged fields were no longer the center of concerns, 2021 has brought high levels of drought. According to the U.S. Drought Monitor, on August 17, 2021, 79% of Iowa was impacted by some degree of drought.

National Drought Mitigation Center map of the 2021 drought in Iowa
The U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center (NDMC) at the University of Nebraska–Lincoln, the United States Department of Agriculture, and the National Oceanic and Atmospheric Administration. Map courtesy of NDMC.

The areas were being scouted out ahead of time for the upcoming 2021 Pro Farmer Crop Tour. Scouts on crop tours have the job of evaluating likely crop production in each region. For more information on crop tours, visit this link.

2021: Storms

Drought became an afterthought just days later. On August 24, 2021, the Midwest experienced multiple storms. Although the severity of the storms did not come close to derechos, they still left behind large paths of downed corn and soybeans. On August 28, 2021, South Dakota and southwest Minnesota even experienced baseball-sized hail.

According to Iowa State University (ISU) Extension Field Agronomist Terry Basol, “The storms hit northeast Iowa farms pretty good, honestly.” Basol said, “It’s amazing the scope of the crop damage,” he continued, concerned about the pace of harvest and crop quality.

Unfortunately, the rain has come too late for many crops, and on top of that, some areas are even flooding. One person, Iowa State University Extension crop specialist Angie Rieck-Hinz, said, “The crop is highly variable. Crop conditions are literally all over the place.”

What’s to Come?

Amidst all these natural disasters and climate change, what can be expected for the future of agriculture in Iowa? In April 2021, the Environmental Defense Fund commissioned KCoe Isom, an agricultural consultancy, to model the potential climate change impacts on Iowa corn, soy, and silage production over the next two decades. According to that site, “Iowa farmers could see statewide gross farm revenues reduced by as much as $4.9 billion per decade. Because with climate change agricultural prices are likely to rise, relative to without climate change, the impact to gross farm revenues from yield impacts will be offset to some degree by higher prices.”

Unfortunately, the increase in climate change (and resulting natural disasters) is likely to continue reducing levels of crop production. This will result in an increase in food prices where those crops are sold, affecting consumers across the country.

The roles for data science and related research around climate and agriculture are growing: in September 2021, the National Science Foundation funded a new multidisciplinary institute led by the University of Illinois, called I-GUIDE, which is focused on better understanding the risks associated with climate change.

Get Involved

Contact the Midwest Big Data Innovation Hub if you’re aware of other people or projects we should profile here, or to participate in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

Machine Learning: Farm-to-Table Workshop

by Keith Hollenkamp –

In April, the MBDH teamed up with the International Food Security at Illinois (IFSI) to host the Machine Learning: Farm-to-Table Workshop. The workshop brought together domain scientists to stimulate new data-driven R+D activity at the intersections of the Agriculture, Bioinformatics, Food-Energy-Water, and Food Security communities.

Read More

The Machine Learning: Farm-To-Table Workshop

The Midwest Big Data Hub (MBDH) is partnering with the International Food Security at Illinois (IFSI) group at UIUC to bring together domain scientists from the Agriculture, Bioinformatics, Food-Energy-Water, and Food Security communities, along with computational experts. The objective of this workshop is to stimulate new data-driven R+D activity at the intersections of these communities. The meeting will be structured to enable new cross-community interactions and initiate grant proposals or publications.

Read More

Food and Data Workshop: Interoperability through the Food Pipeline

September 12-13, 2016
University of Illinois at Urbana-Champaign

The increasing ability to capture data at the level of individual agricultural fields, individual culinary recipes, and individual food waste digesters is allowing analytics-based optimization within the distinct industries responsible for producing, transporting, trading, storing, processing, packaging, wholesaling, retailing, consuming, and disposing of food. Yet addressing the pressing national/global challenges in food security due to climate change, as well as public health challenges such as obesity and malnutrition, requires optimization across the food pipeline. The Food and Data Workshop: Interoperability through the Food Pipeline, September 12-13 in the CSL Auditorium (B02), is concerned with understanding the relationship between data and food writ large, with a particular focus on questions of interoperable data ontologies, privacy, and analytic insights.

For more information and to register go to https://publish.illinois.edu/food-and-data-workshop/.

Digital Agriculture Spoke All-Hands Meeting – May 16-17, 2016

Videos of the presentations are now available!

The 2016 Digital Agriculture Spoke All-Hands Meeting to be held on May 16-17 at the Scheman Building, Iowa State Center, Ames, Iowa. The Digital Agriculture Spoke of the Midwest Big Data Hub is devoted to building partnerships and resources that will address emerging Big Data issues in the agricultural ecosystem.

Stakeholders from academia, industry, government, and other organizations will engage in interactive discussions about the partnerships and resources that will be needed to address the challenges in collecting, managing, serving, mining, and analyzing rapidly growing and increasingly complex data and information collections to create actionable knowledge and guide decision-making in agriculture.

Events will include presentations by Midwest Big Data Hub and national leadership; industry panel presentations and Q&A; participant lightning talks; and breakout sessions to discuss existing projects and to develop ideas and partnerships for new projects; and a poster session and reception.

Early career researchers, post-docs, graduate students, and undergraduate students are encouraged to attend. There is no registration fee for this meeting.