Skip to main content

Building a Climate Asset Map with the Midwest Climate Collaborative

By Sasha Zvenigorodsky

This story is part of a series on partnerships developed by the Midwest Big Data Innovation Hub with institutions across the Midwest through the Community Development and Engagement (CDE) Program.

Climate change—two words that have become increasingly popular throughout the scientific community as the world begins to see its destructive impacts across the globe. Though the rise in climate concerns for the future may appear to be a source of fear and uncertainty, many scholars, researchers, and academic organizations have regarded it as more of a call to action. This is where the Midwest Climate Collaborative (MCC) comes in.

Midwest Climate Collaborative Logo

The Midwest Climate Collaborative is headquartered at Washington University in St. Louis, Missouri, directed by Heather D. Navarro. This program is exclusive to a 12-state region in the Midwest and serves as a coordinating group for cross-sector responses to the ongoing climate crisis, with the objective of spreading knowledge about the issue as well as encouraging leadership and cross collaboration between various organizations to address the problem.

The MCC is a relatively new organization that was launched following the conclusion of a Think Tank series that was centered around outreach and engagement for climate action. By the end of the series, it was apparent that there is a plethora of great climate work being done across different institutions throughout the Midwest. Despite this, there are issues in their ability to connect and achieve collective success. Thus, participating Think Tank partners came together to craft strategies and objectives for the MCC, which was ultimately launched in January of 2022.

Throughout this past year, the MCC has established a variety of different strategic projects. One, launched in collaboration with the Midwest Big Data Innovation Hub (MBDH), is called the Climate Asset Map (CAM). This project has a goal of helping audiences such as researchers, practitioners, and community groups to easily access and contribute to climate action information that already exists in the region.

Currently, many governments and nongovernmental organizations (NGOs) local to the Midwest have limited resources to find and implement the latest climate research. The CAM serves to bridge this gap via an online, user-friendly interface. The assets of CAM could include data sets, research labs, training programs, and more. “Above all, I want this project to encourage people to invest in the Midwest,” says MCC Executive Director Heather Navarro.

As of now, the CAM group is moving forward in conducting a needs assessment survey with the help of a funded partnership with the MBDH. The needs assessment survey will help with the development of the CAM by determining which resources would be most beneficial for potential users to achieve success within their climate work. The survey results will be shared at the Midwest Climate Summit in February 2023, and will be distributed electronically over email and social media.

Although the fight against climate change is not an easy one, the MCC has worked as a catalyst to create a strong, interconnected Midwest region, which will certainly make it easier.

Get Involved

Contact the MBDH if you’re aware of other people or projects we should profile here, or to participate in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

MBDH Partners on New Data Science Workshop for Underrepresented High School Students

By Aisha Tepede

This story is part of a series on partnerships developed by the Midwest Big Data Innovation Hub with institutions across the Midwest through the Community Development and Engagement (CDE) Program.

Deciding what to do after high school can be overwhelming. There are various academic and career options that are provided but many students may feel uncertain and unprepared to make those big decisions. In central Michigan, high school students from several rural towns have the opportunity to learn about data science concepts for future careers at a summer workshop cosponsored by Central Michigan University and the Midwest Big Data Innovation Hub (MBDH).

Central Michigan University (CMU) holds inclusivity as core to its mission. According to the CMU mission, vision and values site, the institution prides itself on inclusion, and the student body and faculty “thrive on student-centered education and fostering personal and intellectual growth to prepare students for productive careers, meaningful lives, and responsible citizenship in a global society.”

The university’s dedication to growth goes beyond its current students and into its larger local community. With the institution having a strong and historic relationship with the Saginaw Chippewa Indian Tribe, the partnership allows for the advancement and improvement of community members’ quality of life. With Native Americans being underrepresented at major points in the academic data science pipeline, it speaks volumes that the university is seeking collaboration to engage with high school students early in their career planning and help them understand potential career paths in data science.

Mohamed Amezziane
Mohamed Amezziane

After seeing the lack of programming geared toward at-risk high school students in the community, CMU faculty members, Dr. John E. Daniels and Dr. Mohamed Amezziane developed a proposal to create a data science workshop for high school students from underrepresented and tribal communities. Daniels and Amezziane stated, “We wish to target students who are unsure about their future but might not be considering college due to financial issues or uncertainty in a major. Often, these students come from underrepresented groups and are overlooked as potential university students.”

With support from the MBDH, CMU will partner with several high schools in rural central Michigan to offer a 5-day summer workshop at CMU, introducing approximately 35 rural and underrepresented high school students to data science. Participants, including student members of the local Ojibwa Tribe, will be recruited with the support and recommendations of their local high schools.

Upon completion of the workshop, students will be more familiar with data science, will analyze data using open-source statistical software (R), and will learn how to prepare and give a professional presentation summarizing their assigned research project. The context of the assigned learning modules and project will be on making healthy lifestyle choices (nutrition, alcohol/drugs). Data used in the workshop will come from selected sources, such as the National Health and Nutrition Examination Survey (NHANES). According to the website, NHANES is a resource that consists of demographic, socioeconomic, dietary, and health-related questions designed to assess the health and nutritional status of adults and children in the United States.

Central Michigan University’s Data Science program was started 18 months ago and is attempting to generate interest among the local student population. The flexibility and versatility of data science provide an opportunity to attract and recruit students who might not fit the typical college-prep template. Not only does the program hope to foster students’ interest in data science but the CMU Admissions staff will also offer assistance to students on how to apply to data science programs, fill out Free Application for Federal Student Aid (FAFSA) financial aid forms, and address possible application barriers that would prevent students from completing a successful admission application.

Through best practices and student feedback from this 5-day program being evaluated, there are plans to make this a yearly event. Overall, the university hopes to see an increase in the number of students pursuing Data Science as a major at CMU or other regional colleges and universities. In addition, by personalizing the data sets, Daniels believes the students will connect how using statistical software could be used to make better decisions in their own lives.

John Daniels
John E. Daniels

Our workshop will focus on making healthy lifestyle choices,” Daniels said. “Instead of preaching about smoking, drinking, or texting while driving, we hope to use data science as a vehicle to demonstrate the consequences of one’s lifestyle choices and at the same time learn about all of the tools and techniques data science has to offer. The methods we will be teaching can be applied to a variety of research questions and data sets. Perhaps this will inspire some students to recognize the value of data science and to pursue it in higher education.”




Joseph (Jeff) Inungu
Joseph (Jeff) Inungu

Dr. Jeff Inungu, CMU Professor and Director of the Master of Public Health Program, believes that by using the lens of public health and data science, “Experience and integrative learning offer students opportunities to gain skills that are highly desirable and prepare them to become leaders who are able to meet the ever-changing challenges of promoting, protecting, and enhancing the health of vulnerable communities.”

Regarding the long-term goals for the workshop, Daniels says, “Overall, the program will continue to focus on data science, reinforce the healthy lifestyle context, and gradually increase the number of workshop participants. The desired outcome is a steady increase in data science majors in our geographic area.”

When the workshop concludes, the team will work with the MBDH to assess the impact of the project and make resources available for faculty at other institutions to use in developing similar events on their campuses.

Get Involved

This work is supported by the National Science Foundation through the MBDH Community Development and Engagement (CDE) Program.

Contact the MBDH to learn more, or if you’re aware of other people or projects we should profile here. We invite participation in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

MBDH Learning Innovation Fellows Program Builds on Success with Second Cohort

The Midwest Big Data Innovation Hub and the Gala Sustainability Learning Initiative at the University of Michigan School for Environment and Sustainability continue to build on the success of last year’s Learning Innovation Fellows pilot program with a second cohort of fellows. The student fellows, hailing from a range of midwestern institutions, work with faculty advisors at the intersections of the Midwest Hub’s “Cyberinfrastructure and Data Sharing” and “Data Science Education and Workforce Development” themes. The program brings together data science and sustainability, delivering open-access, data-enriched learning tools on the Gala platform, along with experiences and mentoring for student fellows.

Teams

Alternative Transportation Scenarios
Shanshan (Shirley) Liu

Shanshan (Shirley) Liu (Student Fellow) is a PhD student from the Department of Civil and Environmental Engineering at the University of Illinois at Urbana-Champaign. Her research interests include transportation electrification policy and planning, sustainable transportation systems, and transportation energy. Shirley’s project is based around Shelie Miller’s case study, Assembling Our Transportation Future, which asks readers to think about transportation policy hinge points in American history. She is using Python to create tools that allow students to analyze scenarios of alternative vehicle adoption and evaluate them from the perspective of energy consumption and carbon emissions.

Shelie Miller

Shelie Miller (Faculty Advisor) is a professor at the University of Michigan School for Environment and Sustainability. Her research uses life-cycle assessment and scenario modeling to identify environmental problems before they occur. Miller’s research group works on a variety of energy-related topics, including the energy-water nexus, bioenergy, refrigeration in the food system, and autonomous vehicles.





Modeling Rainforest Carbon Cycling
Anneke van Oosterom

Anneke van Oosterom (Student Fellow) is a sophomore double majoring in biology and data science at St. Catherine University. She is currently involved with the biology department at St. Kate’s through the Biology Club and as a microbiology lab prep assistant. Through the fellowship she is creating a systems model using the Insight Maker modeling tool to demonstrate carbon cycling in tropical rainforests for Ann Russell’s forthcoming case Healing the Scars: Tropical Rainforest Carbon Cycling (developed through the OCELOTS network for tropical ecology).

Ann Russell

Ann Russell (Faculty Advisor) is a terrestrial ecosystems ecologist at Iowa State University, with special expertise in the biogeochemistry of tropical and managed ecosystems. Her research addresses links between traits of plant species and ecosystem processes, focusing on species and management effects on belowground processes, and subsequent implications for human impacts on soil fertility and carbon sequestration. Her research is designed to enhance our understanding of human impacts on the biosphere, improve biogeochemical models, and help guide selection of species for sustainable management of agroecosystems.


Scenario Planning for the Rouge River
Julie Arbit

Julie Arbit (Student Fellow) is in her final semester as an environmental policy and planning student within the School for Environment and Sustainability at the University of Michigan (UM). She works as a research associate for the Center for Social Solutions at UM, where her main project focuses on equity in flood risk, response, and recovery. Julie is using ArcGis Online and Python to create scenario planning tools for the case The Rouge River: Redlining, Riverbanks, and Restoration in Metro Detroit.


Perrin Selcer

Perrin Selcer (Faculty Advisor) is an associate professor and director of undergraduate studies at the University of Michigan Department of History. He works at the intersection of environmental history, history of science, and international relations.







Accessible Data Science Tools for Water Utilities
Thien Nguyen

Thien Nguyen (Student Fellow) is a second-year computer science undergraduate and sustainability enthusiast at the University of Minnesota, Twin Cities (UMN). He has previously worked with UMN’s Institute on the Environment, writing geospatial analysis algorithms in Google Earth Engine to observe soil degradation in Senegal’s Peanut Basin. Thien is working with PhD student Matt Vedrin to create tools for a PIT-UN funded collaboration working to help classrooms, communities, and workforces confront challenges in the monitoring and improvement of drinking water distribution systems.

Lutgarde Raskin

Lutgarde Raskin (Faculty Advisor) is a professor at the University of Michigan School for Civil & Environmental Engineering. She works to rethink engineered systems to better harness the power of microorganisms to treat water and recover resources from waste streams. Dr. Raskin and her team work to understand and improve various aspects of the engineered water cycle microbiome to improve human health using sustainable design approaches, with a focus on biofiltration, disinfection, distribution, and building plumbing biostability.



Get involved

This work was supported by the National Science Foundation through the MBDH Community Development and Engagement (CDE) Program.

Contact the Midwest Big Data Innovation Hub if you’re aware of other people or projects we should profile here, or to participate in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

New MBDH Community Development and Engagement partners

By Qining Wang

The Midwest Big Data Innovation Hub (MBDH) recently partnered with multiple institutions in the region for new data science activities under its Community Development and Engagement Program. This program incubates new projects and provides support to help them grow.

In the last proposal cycle, the MBDH Seed Fund Steering Committee selected three projects to support, led by the Tribal Nations Research Group (TNRG), St. Catherine University, and Trinity Christian College.

TNRG Digital Agriculture Meeting

The TNRG, together with the University of North Dakota and Grand Farm/Emerging Prairie, will host a one-day workshop in 2022, at the Microsoft Business Center in Fargo, North Dakota. This workshop will connect tribal colleges and universities working with their local tribal governments to extend digital agriculture and educational opportunities to Native farmers.

Approximately 30% of the nation’s Native population and 20 of the 37 of the nation’s tribal colleges and universities are located in the MBDH service area. Because of this, the MBDH is well-positioned to engage tribal stakeholders on issues related to Data Science Education and Workforce Development. This is especially true in the context of Digital Agriculture, where many of these institutions are working with their local tribal governments to extend agricultural programs and educational opportunities to Native farmers.

Tribal communities have not had the dedicated capital for building a resilient and sustainable infrastructure for harnessing food on their lands for a long time. The lack of such infrastructure creates food insecurity that can be detrimental to Indigenous peoples. In addition, due to climate change, it is crucial to build sustainable farming practices that can provide sufficient food and preserve the ecosystem everywhere in the long run.

One way to realize optimal farming practices is to incorporate digital agriculture, which integrates digital technologies into crops and livestock management. Technologies such as machine learning and big data analysis tools can improve agricultural production while minimizing the harm to the ecosystem. For instance, by correlating multiple parameters related to crop growth using machine learning, farmers can better predict crop yield based on other parameters such as nutrients in the soil, weather, and fertilization. Those technologies can therefore make information on ecosystems, crops, and animals more findable and interpretable to farmers.

However, implementing digital agriculture on tribal lands involves extra layers of nuance. Data scientists and agricultural experts must conduct digital agriculture research in tribal regions under proper data sovereignty standards, such as the CARE Principles for Indigenous Data Governance. Indigenous peoples are entitled to know what data is collected and how data scientists use and analyze their data. The data should enable Indigenous peoples to derive benefit from any fruits of the research involving tribal communities.

This workshop will serve to increase the accessibility of digital agriculture in Native communities, emphasizing respecting the culture, traditions, and sovereignty of the Native people. In addition, this workshop will enlist more tribal stakeholders nationwide for broader engagement in digital agriculture, potentially developing a Data Science Workforce Development and Education proposal for Native communities. Anita Frederick, the President of TNRG, will lead this workshop and present the importance of Data Management and Data Sovereignty.

“Outreach to Indian tribes is often difficult for non-tribal entities and individuals,” Frederick said. “As a direct result, tribal populations are often left out of initiatives that could help to address some of the economic, health, and other societal conditions that tribes face. Clearly, American Indian citizens must have access to the opportunities envisioned in the Big Data Revolution. The proposed project is a first step in helping to close the growing Big Data gap that is emerging between Indian country and the rest of the nation.”

St. Catherine Data Science Boot Camp

MBDH will also support a data science program “created by women for women” at St. Catherine University (aka St. Kate’s), one of the USA’s largest private women’s universities, located in St. Paul, Minnesota. This program aims to cultivate a new generation of women and historically underrepresented data scientists. In addition to teaching data science and data analytic principles, this program will also raise students’ awareness of using data science in ethically, socially, and environmentally just ways.

Introduced in the fall semester of 2018, the data science program at St. Kate’s reaches both current and prospective students of the University. Monica Brown, the Mary T. Hill Director of Data Science at St. Kate’s, will lead the program’s two initiatives in 2021-2022. Working alongside her colleagues at St. Kate’s for over 13 years, Brown aspires to make data science and data analytics principles accessible to every student in the St. Kate’s community.

Brown will launch a one-week Data Science Boot Camp in the summer of 2022. This boot camp will provide hands-on coding experience to middle- and high-school students, particularly those historically excluded from data science. In addition, Brown will invite data science professionals to speak about future career opportunities. Overall, this program aims to enable younger students to envision themselves as future data scientists and to elicit their passion for coding and data science. The lessons learned organizing this event will be shared with others who wish to do so with their own student populations.

“St. Kate’s is grateful for the partnership with MBDH towards the support of a boot camp,” said Brown. “We very much look forward to bringing younger students onto our campus to encourage and empower them through data science activities.”

Trinity Data Science for Social Good Workshop

The third project to be incubated under the MBDH’s Community Development and Engagement program will be an annual workshop and conference on Teaching with Data for Social Good (DSG) in summer 2022. DSG addresses the importance of teaching data science for positive social impact, and this conference serves as an opportunity that encourages teaching faculty to include DSG in their curricula proactively.

Trinity Christian College, a faith-based institution located on the outskirts of Chicago, will host this meeting. The workshop chair will be Dr. Karl Schmitt, an assistant professor in the Data Analytics department at Trinity and the coordinator of the Data Analytics program.

The meeting format resembles that of regional professional society meetings, consisting of a workshop, keynotes, and contributed talks. To provide more practical assistance to teaching faculty incorporating DSG, faculty will directly generate teaching materials that include DSG in the primary workshop sessions. Additionally, faculty will also have a chance to practice teaching DSG by actively advising student teams participating in a colocated datathon. In this student competition, student teams will use data science to solve practical problems.

“An important component of increasing persistence and success for our current generation of students is connecting their coursework to meaningful change or outcomes,” Schmitt said. “Through the Workshop on Data for Good in Education, the MBDH will be supporting faculty in developing their teaching to better incorporate the Data for Social Good (DSG) movement. This provides a natural connection to relevance with grass-roots level improvements in our society while promoting the broad applicability of data science.”

Beyond these outcomes, Schmitt said, “the workshop will be a professional development opportunity for all instructors seeking to more deeply engage their students through meaningful social good projects within a classroom setting. It will inspire, educate, and most importantly, allow faculty the chance to share, and prepare, materials for use within their own teaching context.”

Get involved

Learn more about other Community Development and Engagement partnerships, and contact the MBDH if you have an idea for a project to help build the data science community in the Midwest.

Contact the Midwest Big Data Innovation Hub if you’re aware of other people or projects we should profile here, or to participate in any of our community-led Priority Areas. The MBDH has a variety of ways to get involved with our community and activities.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

Building a Midwest Carpentries Community

By Raleigh Butler

The Midwest Big Data Innovation Hub is committed to building data science instructional capacity in the Midwest region, particularly at smaller colleges and universities, such as predominantly undergraduate institutions (PUIs).

One avenue for this is the Midwest Carpentries Community, a partnership between the MBDH and the University of Wisconsin-Madison, under the Hub’s Community Development and Engagement (CDE) incubator program.

The project aims to build “hands-on data science instruction capacity,” by using the existing curriculum and workshop model of The Carpentries, an international member-supported organization that strives to teach data science and coding skills on a global scale. The organization is structured around three lesson programs: Software Carpentry, Data Carpentry, and Library Carpentry, which are “communities of Instructors, Trainers, Maintainers, helpers, and supporters who share a mission to teach foundational computational and data science skills to researchers.”

In this post, we will focus on a discussion with Sarah Stevens, who leads the Midwest Carpentries Community. Stevens is a 2021 member of the Executive Council for The Carpentries. She is also a Data Science Facilitator at the University of Wisconsin–Madison, in the Data Science Hub within the Wisconsin Institute for Discovery and American Family Insurance Data Science Institute.

How did you get involved with The Carpentries?
“I did my undergrad at the University of Illinois. My degree was in molecular and cellular biology, but I did a minor in informatics. And when I came to graduate school, I found that none of my classmates had done any coding and they didn’t know computation. And almost all of them had to learn how to do some computational analysis over the course of grad school. So to help support [them], I started a community of practice around helping each other with our computational needs and learning from one another. I was trying to bring people together not just to discuss the biology in our research, but actually the computation in our research, and in doing so I also got connected with The Carpentries community. There’s been an ongoing Carpentries community since long before my time at the University of Wisconsin-Madison. And my advisor recommended ‘maybe you should sign up for instructor training so you can learn how to teach these things better.’”

What are some of the main projects you’ve worked on during your time there, specifically in the Midwest?
“I’ve been trying to bring together researchers in the Midwest who are either running Carpentries communities of their own or want to get started with Carpentries communities. We’ve been hosting a monthly call to bring those people together to help each other, similar to the community of practice I started in grad school. I’d say probably instructor training is one of the things that I find the most useful and interesting in The Carpentries. I think it’s really cool to talk to other instructors about how to teach, and how to teach using evidence-based research, and how to teach computational skills and learn from one another.”

What are some of the skills that people develop in Carpentries workshops?
“They [the learners] come to learn R, Python, the Unix shell, and Git, but what I really want them to get is a foundation where they believe that they can learn more. I feel like a lot of people come to our workshops feeling like computing and technology is not for them. Maybe they’ve even had bad experiences trying to learn coding in the past. What I really want people to learn and come away with from our workshops is that they can learn this.”

What has been different about doing Carpentries-related activities specifically during the pandemic?
“Moving online has its own challenges. Being a part of a community of instructors, who are also all dealing with this transition to online at the same time, I got to learn a lot from what other people did and how it worked for them. So, as a community, we were able to share tips and tricks and best practices for moving online and learn from one another. That’s really one of the things I love most about The Carpentries community is being able to benefit from other instructors’ experiences.”

“I will say the worst part about moving online is that while I totally respect folks not turning on their video, it’s a little less rewarding to teach to a screen. You do get feedback, like the sticky note feedback we collect in Google forms and people typing in chat, ‘this was a great workshop.’ But you don’t get to see them actually overcome that boundary of ‘I didn’t think I could do it—and I can do it now or this makes sense to me suddenly.’ And so it’s a little less rewarding to teach online, I will say, but I do feel like it’s been a good learning experience of having to pivot and practice these skills in a different way of teaching and checking in with learners.”

You proposed the Midwest Carpentries Community project for the MBDH CDE program—what did you perceive as the need for that?
“I’m seeing communities start to form in other places across the world. And I think it’s really great for creating new Carpentry communities and teaching these important skills across the globe. I was running into people from other institutions who had interacted with The Carpentries in some way. I wanted to be able to share my experience with The Carpentries like at UW–Madison; what works well with the UW–Madison Carpentries community, with other folks in the Midwest and working to learn from them as well.”

“So, what works well at Illinois, what are they doing that we can learn from? Are they creating new workshops that we too could use? That’s where I saw the need—I wanted to be able to support these new instructors and new communities that we’re developing in the Midwest, and learn from the existing communities that have been teaching Carpentries workshops for a while and doing new and interesting things.”

What would you say to someone new to The Carpentries world about why it’s valuable to participate in the community beyond attending a workshop?
In addition to offering the teaching of various skills, Stevens says “I think it’s really valuable. There’s so many things you get from it, you learn a lot about building an inclusive community as that is a big part of the Carpentry community.”

She adds, “I see a lot of networking—developing an interpersonal network and being able to find employment in the future is also a benefit of this, but you make connections with other institutions and learn from them and other organizations across the globe, really, and so it’s a great opportunity to learn from others, not just being in the workshop, but observing other people in our community and their activities they’re up to.”

Get involved

Contact the Midwest Big Data Innovation Hub if you’re aware of other people or projects we should profile here, or to participate in our activities, which include a data science student community and the national BD Hubs monthly webinar on data science education and workforce development.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, Indiana University, Iowa State University, the University of Michigan, the University of Minnesota, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the national NSF Big Data Hubs community.

MBDH Learning Innovation Fellows program – first cohort projects

The Midwest Big Data Innovation Hub Learning Innovation Fellows Program, housed at the University of Michigan School for Environment and Sustainability, enables teams to form for work toward better understanding of the intersections of the Hub’s “Cyberinfrastructure and Data Sharing” and “Data Science Education and Workforce Development” themes.

Our fellows work with faculty and teaching staff to create innovative interactive data analysis activities that can nest within sustainability science case studies. They design, prototype, and pilot these features in classrooms within the MBDH network. The program leverages talent and resources from two existing, open-source science learning environments. Gala (www.learngala.com) is a community-based, responsively designed sustainability science learning environment. Quantitative Undergraduate Biology Education and Synthesis (QUBESHub, or Qu) is a virtual center for faculty development and open educational resource sharing (https://qubeshub.org) that has had long-term support from NSF, formalizing and professionalizing open educational resources.

Through a series of virtual “Networkshops,” we connect undergraduate data science majors, graduate/professional students, faculty, and professionals. We can thus be inclusive, incorporating into classrooms problem-driven, data-rich material that speaks to lived infrastructural and environmental challenges from a range of communities across our region, and beyond. The team includes the following:

Leadership—

Rebecca Hardin (PI) is an anthropologist and Associate Professor at the University of Michigan School for Environment and Sustainability (UMSEAS), where she leads collaborations on the open-source, open-access learning platform Gala (www.learngala.com) and research group on Digital Justice. Rebecca also coordinates the Environmental Justice Field of Specialization and related Certificate program at UMSEAS.



Ann E. Russell (Co-PI) is an ecosystems ecologist, with special expertise in the biogeochemistry of tropical ecosystems. She is an Associate Adjunct Professor in the Department of Natural Resource Ecology and Management at Iowa State University, and PI of the NSF Research Collaborative network ALIVE: Authentic Learning in Virtual Environments.





M. Drew Lamar (Co-PI) is a mathematician and Associate Professor of Biology at William & Mary. His teaching and research are highly interdisciplinary in nature, using techniques and concepts from mathematics, statistics, biology, and computational sciences. Drew is Co-PI and Director of Cyberinfrastructure for the Quantitative Undergraduate Biology Education and Synthesis (QUBES) virtual center, with an interest and passion in open-source software development, quantitative biology education, and development of education gateways.

Ed Waisanen (Program Manager) is Program and Platform Lead for Gala (learngala.com). He has a master’s degree in Natural Resources and Environment from the University of Michigan, with a focus in Environmental Informatics and a background in multimedia production. Ed is focused on developing tools and communities that emphasize curation, open exchange, and narrative approaches to deepen learning.





Teams—

Data Learning for Restoration Ecology

Kyra Hull (Fellow) is a native of Grand Rapids, Michigan, and a first-year graduate student at Grand Valley State University, studying Biostatistics. Kyra is working on the following case about forest restoration, which is bilingual (Spanish and English versions): https://www.learngala.com/cases/a3224235-cdc0-44fc-a98b-46735dfef6c9




Karen Holl (Faculty Advisor) is a Professor of Environmental Studies at the University of California, Santa Cruz. Her research focuses on understanding how local and landscape-scale processes affect ecosystem recovery from human disturbance and using this information to restore damaged ecosystems. She advises numerous public and private agencies on land management and restoration; recently, she has been working to improve outcomes of the effort of the many large-scale tree-growing campaigns.




Data Learning to Address Groundwater Contamination

Saba Ibraheem (Fellow) is a second-year Health Informatics student at the University of Michigan, focusing on data analytics and research in health care. Saba is working on the following case, which is bilingual (English and French versions): https://www.learngala.com/cases/dioxane-plume





Rita Loch-Caruso (Faculty Advisor) is a toxicologist in the Department of Environmental Health Sciences at the University of Michigan School of Public Health, with a research focus in female reproductive toxicology and, in particular, mechanisms of toxicity related to adverse pregnancy outcomes such as premature birth.





Alan Burton (Faculty Advisor) is a Professor at the School for Environment and Sustainability and the Department of Earth and Environmental Sciences at the University of Michigan. His research focuses on sediment and stormwater contaminants and understanding contaminant bioavailability processes, effects, and ecological risk at multiple trophic levels. He is also a specialist in ranking stressor importance in human-dominated watersheds and coastal areas.





Data Learning in Livestock Ecologies

Daniel Iddrisu (Fellow) is a second-year student in Masters in International and Regional Studies, with a specialization in Africa, at the University of Michigan. He earned a BA degree in Integrated Community Development from the University for Development Studies, Tamale, Ghana. His research focuses on health, development, gender, and environmental health. The case he is working on takes place on the Greek Island of Naxos, but comprises skills for modeling and analyzing human/livestock interactions more broadly: https://www.learngala.com/cases/livestock-grazing

Johannes Foufopoulos (Faculty Advisor) is an Associate Professor at University of Michigan’s School for Environment and Sustainability, who focuses his lab research on fundamental conservation biology questions and on issues related to the ecology and evolution of infectious diseases. Major research projects examine how habitat fragmentation, invasive organisms, and global climate change result in species extinction.





Data Learning on Safari

Rahul Agrawal Bejarano (Fellow) has a background in computer science and he is currently working on a master’s degree at the University of Michigan School of Environment and Sustainability, with a concentration in Sustainable Systems. Rahul uses data from a diverse range of sources to shed light on today’s environmental challenges and develop innovative solutions, and is working on identifying climate-related vulnerabilities to our supply chains. He is working on this case, about the interactions of various wildlife species in the Serengeti: https://www.learngala.com/magic_link?key=oOTYOXyDRpmY_yM4AFlnXQ


Charles Willis (Faculty Advisor) is a Teaching Assistant Professor, Biology Teaching and Learning at the University of Minnesota. He is currently interested in the research and development of pedagogy practices for non-major biology students. In particular, he is focused on studying student-student and instructor-student feedback in online spaces. His research is also concerned with understanding how changing environments shape plant diversity on both evolutionary and ecological time scales. Currently, he is focused on using historical specimen data to study how historic climate change (over the past century) has impacted plant phenology and diversity across North America.

Jeffrey A. Klemens (Faculty Advisor) is an Assistant Professor of Biology at Thomas Jefferson University, where he serves as program director for the undergraduate biology curriculum. His current research activities are focused on the use of agent-based models to describe habitat use by organisms in the urban environment and the role of active learning in science education, particularly the use of systems thinking and other modeling techniques to improve student understanding of complex phenomena.




Data Learning in Detroit’s Eastern Market

Ghalia Ezzedine (Fellow) is a second-year master’s student studying Health Informatics. She is interested in leveraging data and digital tools to improve population health. In her free time, she likes to try new recipes, work out, and occasionally jump off a bridge or airplane. She chose this case study because of her interest in nutrition, and the shift in foods available at this iconic marketplace: https://www.learngala.com/cases/2b92db37-de87-4321-a531-510dea225189



Josh Newell (Faculty Advisor) is an Associate Professor in the School for Environment and Sustainability at the University of Michigan. He is a broadly trained human-environment geographer, whose research focuses on questions related to urban sustainability, resource consumption, and environmental and social justice. His research approach is often multiscalar and integrative and, in addition to theory and method found in geography and urban planning, he draws upon principles and tools of industrial ecology and spatial analysis.