Skip to main content

Profile: Crystal Lu

Nitrogen reduction in the Upper Mississippi River Basin

By Katie Naum

As extreme climate events become more frequent, some of their impact is visible—like the derecho that tore through Iowa in August 2020, leaving a wake of destruction in its path. Other impacts—including nutrient pollution in water systems—are less understood. In what ways will climate change affect the world around us? How can we use data science to better understand and adapt to the impact of climate extremes? 

Chaoqun (Crystal) Lu portrait
Chaoqun (Crystal) Lu

Chaoqun (Crystal) Lu is a quantitative ecosystem ecologist and assistant professor at Iowa State University, and a collaborator of the Midwest Big Data Innovation Hub. Her work focuses on water quality modeling, including the impact of extreme climate events and human activities on nutrient pollution. Her recent NSF CAREER award is titled “Understanding the dynamics and predictability of land-to-aquatic nitrogen loading under climate extremes by combining deep learning with process-based modeling”. The project will bridge the gaps between science and practice, sharing the most current knowledge of Earth system modeling to the public and making the complex concept of watershed management more concrete for the next generation of scientists, land managers, policy makers, and voters.

I spoke with Lu recently via Zoom to learn more about her work with water quality data. The following conversation has been edited and condensed for clarity.

Why is it important to study water quality here and now?

In the United States, nearly 60% of coastal rivers and bays have been degraded by nutrient pollution. Here in the Midwest, people have invested a lot of money and effort over the years to reduce nitrogen pollution. At the same time, climate-driven variations may far outweigh the effects of these nitrogen reduction practices. Increasing summer humidity, more frequent heavy rainfalls, and extreme floods have become a new normal in the central United States over the past few decades. There are a lot of unknowns about how extreme climate events have affected nitrogen leaching from soil and nitrogen loading through tiles, streams and rivers. Lots of data exist, though! 

Policymakers need science-based management suggestions. As a researcher, I would like to benchmark my model with long-term measurements of water quality, and scale up from site-specific measurements to a broader region such as the Upper Mississippi River Basin. If we can figure out how to reduce nitrogen pollution here in the Midwest, the solution we come up with will be very likely to be effective elsewhere. 

Can you tell readers more about the focus of your work, including your recent NSF CAREER award? (Congrats!)

I’m engaged in water quality modeling projects—studying, for example, the impact of nitrogen reduction practices on water quality. Our research team uses mathematical models to represent the physical processes involved in connected systems—the flow of water, the amount of nutrients used by plants or lost to runoff. We also quantify how climate change, land uses, and human management practices could affect nitrogen loading, and assess the effectiveness of nitrogen reduction practices in cleaning water.

The focus of this CAREER award is on how extreme climate events may affect nitrogen loading. My team wants to see how sensitive nitrogen leaching and loading are to events like these, which are increasing in the Midwest. We’re integrating machine learning approaches with a traditional process-based hydroecological model, using a large volume of water quality monitoring data that drains from various sized watersheds in the upper Mississippi–Ohio river basin. I want the key processes represented by traditional process-based models to be kept for water quality prediction, and at the same time improve the models’ outputs with “big data” and machine learning. Our integrated model uses data on water quality, weather, land cover, and human management practices, to better understand whether and where there are nitrogen pollution hotspots in the region. 

What are some of the challenges in working with water data? What are the insights you hope to gain from your research?

One important challenge is just the enormous amount of variation in the data. If you look at a time series for hydrological flow, you see huge variation in the relationship between flow and nitrogen concentration. The challenge we have is to quantify how varied and why. Why do some small watersheds have larger variations than others? Why are some regions more sensitive to climate than others? Is this pattern we’re seeing caused by a specific event, or the legacy of many such events over time? We want to get the whole picture on nitrogen dynamics, from vegetation to soil to water to rivers, from small to large watersheds, at daily time steps, using modeling to recreate such processes.

In our work under this award, we’re planning to include more small watersheds and high frequency data sets. I’m looking forward to new insights from such data analysis. There is so much data over the past few decades to work with, and the technology of water quality monitoring has really improved.

How does deep learning contribute to watershed management?

Deep learning has been transformative for hydrological science and earth system science, yet few studies have used it to digest the big data of water quality monitoring. Meanwhile, high-frequency water quality monitoring data are increasingly available, especially in smaller watersheds and at shorter time scales. This brings new opportunities to test the relationship between flow and nitrogen concentration in response to climate extreme events. All of this motivates me.

Do you consider yourself a data scientist as well as an ecologist? 

I consider myself an ecosystem ecologist, with data science skills. The question I want to find answers to are mostly ecological questions. Sustainability science, biogeochemical cycles, climate variability, natural and human drivers—these are all ecology questions. I say this even though I received training in ecosystem modeling and geospatial analysis for many years—but I consider these tools, the same way I consider machine learning a tool. I always keep my eyes open for tools that can help answer the ecological questions I care about. I tell my students this too: even if their degree or job title says ‘ecosystem modeler,’ I always hope they will step back and see the big picture.

How might interested stakeholders learn more or get involved?

We’ll be developing a project webpage where we will release research findings, future publications, and other relevant materials. Our results will be presented and disseminated to interested stakeholders through our collaborating institutions—not only to academic investigators, but also to the general public, because they are the people who actually make decisions on managing the land and improving the environment. 

This is a very multidisciplinary project, and others may have different ways of thinking about and analyzing the problem that we haven’t considered. We would love to hear from other researchers interested in analyzing the problem from another angle. We are also working actively to seek collaborators and more grants to leverage this project, putting available data sources online to allow easy access.

What do you love most about your research?

Being a modeler is a very precious role. Through multi-scale modeling, we try to connect a lot of different people—field scientists, computational experts, engineers, economists, stakeholders, and policy makers—who can work together to understand and build a more sustainable world for us to live in. This provides a lot of opportunity to collaborate with people in different fields. As a quantitative ecosystem ecologist and ecosystem modeler, I can serve as a bridge between field scientists, extrapolating their findings, and decision makers, who want to see and understand ecological outcomes. The work is really useful and applicable in real life. I enjoy the endless possibilities and the feeling that my research is useful and applicable for our world.


Katie Naum writes on science & technology, climate change, and culture. Follow her @naumstrosity and read more at katienaum.com.


Get involved

Contact the Midwest Big Data Innovation Hub if you’re aware of other people or projects we should profile here, or to participate in any of our community-led Priority Areas.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, the University of Michigan, the University of Minnesota, Iowa State University, Indiana University, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the NSF Big Data Hubs community.

Midwest water researchers explore COVID-19 in wastewater

This story is part of a series on coronavirus research in the Midwest region

Researchers in the Midwest are looking in a surprising place for clues about the COVID-19 pandemic: wastewater.

Because so many people who are infected with COVID-19 are asymptomatic, scientists are interested in measuring the prevalence of the SARS-CoV-2 coronavirus in wastewater as a way to understand the population-level spread of the virus in communities. In-person testing can be problematic for a variety of reasons, so researchers are interested in alternatives.

Minnesota Public Radio interviewed one research group that is exploring new ways to explore coronavirus spread without directly testing people. “We’ve decided that one of the easiest ways to do that would be to noninvasively kind of scan the population for the presence of the virus,” University of Minnesota professor Glenn Simmons Jr. said. “And one easy way of doing that would be to look at the wastewater.”

Simmons, along with his collaborator Richard Melvin at UMN Duluth, are testing samples collected from wastewater treatment facilities for the presence of genetic material from the SARS-CoV-2 virus. Other researchers in the Midwest are working on similar sample collection, data analysis, and developing new tools and resources.

One resource under development is a publicly accessible, web-based Wastewater Pathogen Tracking Dashboard (WPTD). Dr. Rachel Spurbeck, research scientist at the non-profit Battelle Memorial Institute in Columbus Ohio, leads the creation of this project.

“The WPTD program is tracking SARS-CoV-2 and other viral pathogens found in the wastewater of four different locations in Toledo, Ohio over time and comparing the sequencing results to the public health and demographic data for these sites”, Spurbeck said. “This comparison will be used to generate risk models for COVID-19 spread in the community as well as other viruses present. We will also be identifying mutations in SARS-CoV-2 which will not only tell us that the virus is in the communities being studied, but also if there are any differences in the virus that could enable identification of how the virus is affecting the population and where the virus came from geographically.”

The data collected will be entered into the Wastewater Pathogen Tracking Dashboard for use by local public health officials to aid in identifying where contact tracing will be most useful. The project is funded by the National Science Foundation (NSF).

Since March 2020, the NSF has made hundreds of new awards focused on COVID-19 research to help address the pandemic. The NSF and the four regional Big Data Innovation Hubs collaborated on the creation of the COVID Information Commons resource to bring together information on these projects. Researchers can use the site to help find tools and resources, and to develop collaborations with other researchers.

Other wastewater tracking projects in the Midwest include two led by Kyle Bibby, Associate Professor of Engineering at Notre Dame university in Indiana. Bibby is leading an effort to develop methods to monitor for the presence of SARS-CoV-2 in wastewater and to connect these measurements to epidemiology models. Bibby also leads a project to create a national Research Coordination Network (RCN) focused on wastewater surveillance, in collaboration with partners from Howard University, Stanford University, Arizona State University, and the Water Research Foundation.

At the national level, the U.S. Centers for Disease Control and Prevention (CDC) has announced the development of a National Wastewater Surveillance System (NWSS) that collects data from local, state, tribal, and territorial health departments to supplement the efforts above.

Get involved

Contact the Midwest Big Data Innovation Hub if you’re aware of other projects we should include here, or to participate in any of our community-led Priority Areas.

The Midwest Big Data Innovation Hub is an NSF-funded partnership of the University of Illinois at Urbana-Champaign, the University of Michigan, the University of Minnesota, Iowa State University, Indiana University, and the University of North Dakota, and is focused on developing collaborations in the 12-state Midwest region. Learn more about the NSF Big Data Hubs community.

Midwest Big Data Hub co-leads local events for 4th Annual Global Women in Data Science Conference

The Midwest Big Data Hub co-led local participation in the 4th annual Global Women in Data Science (WiDS) Conference, with sponsorship from the National Center for Supercomputing Applications (NCSA) and the University of Illinois. The event was free and open to all. The WiDS Conference, hosted on March 4th at 150 locations around the world, seeks to unite and connect women working in data science fields.

“We were very excited to co-sponsor this with NCSA, and support this inaugural Illinois event for Stanford’s Global Women in Data Science Day,” said Melissa Cragin, Executive Director of the Midwest Big Data Hub. “Partnering with others on events such as the Illinois WiDS allows us to best use our human resources and experts network to broaden participation in data science and Big Data research and education. I was honored to participate and have the opportunity to moderate such a terrific panel of accomplished leaders, who shared their perspectives on data science, data-enabled research, and opportunities for women in this space.”

panel discussion
Faculty panel moderated by MBDH Executive Director Melissa Cragin

The WiDS local events, hosted this year at NCSA, featured a variety of speakers from diverse backgrounds presenting sessions on opportunities for women in data science, technical vision talks, and the variety of data science and technology careers available in the Midwest.

“I always enjoy telling my story about how I got started working big data research,” said Ruby Mendenhall, Illinois Professor of Sociology and African-American Studies and NCSA faculty affiliate. “My story also demonstrates the importance of doing outreach to groups that are not traditionally represented in data science such as African American Studies.”

As part of her 2017-2018 NCSA Faculty Fellowship, Mendenhall and NCSA research programmer Kiel Gilleade completed a pilot study called the Chicago Stress Study that examines how the exposure to nearby gun crimes impacted African American mothers living in Englewood, Chicago. Mendenhall and Gilleade developed a mobile health study which used wearable biosensors to document 12 women’s lived experiences for one month last fall. As part of their research, Mendenhall, Gilleade, and their team were able to create an exhibit based on the study data they collected in order to bring the unheard, day-to-day stories of these mothers to life.

panel discussion
Panel discussion moderated by iSchool Professor Catherine Blake

Professor Donna Cox, Director of NCSA’s Advanced Visualization Lab, was a panelist at this year’s local conference, and praised the insights of the other speakers while emphasizing the importance of the larger WiDS conference. “It was valuable to hear other panelists,” said Cox. “The future of Women in Data Science should include raising awareness about important issues emerging in data science, especially socially-relevant issues. We need more women actively involved in the ethics of data science.”

Alice Delage, Associate Project Manager for NCSA and Program Coordinator for the MBDH, said, “Hosting WiDS Urbana-Champaign at Illinois was an opportunity to highlight the campus expertise around data science led by women.” Delage, who co-chairs the local Women@NCSA group, said, “Data science and technologies are increasingly impacting our lives and society, and it is imperative that women and minorities be part of these transformations. We wanted to showcase the groundbreaking work being done in that area by Illinois female data scientists and to inspire more women and underrepresented communities to engage in the field.”

There are also opportunities to expand the event next year by better incorporating student work in the program, Delage said, or running a datathon, for example. Some of this year’s participants have already volunteered to help with next year’s event.

A full list of this year’s speakers at the WiDS Conference at NCSA is here. For more information about the global WiDS conference and ways to get involved, please visit https://www.widsconference.org.

The MBDH is one of four regional Big Data Innovation Hubs with support from the National Science Foundation (award # 1550320), and works to build capacity and skills in the use of data science methods and resources in the 12-state U.S. Midwest Census region. Learn more about the Hub at https://midwestbigdatahub.org.

Thanks to NCSA Public Affairs for contributing to an earlier draft of this post.

BD Hubs profiled in SIGNAL magazine

The NSF-funded Big Data Innovation Hubs were highlighted in a recent article in SIGNAL magazine, a publication of the AFCEA (Armed Forces Communications and Electronics Association). The Executive Directors of the Midwest and Northeast Big Data Hubs, Melissa Cragin and René Baston, were quoted extensively from interviews that covered the wide-ranging communities and activities of the Hubs. Here is an excerpt from the article:

“[W]hile we’re called the Big Data Innovation Hubs, we’re very focused on building capacity in data science, building expertise, access to data-related services and networks related to all things data science,” said Cragin.

That means making available “to all kinds of communities” access to data-related skills, services, tools and opportunities, Cragin states. By developing public/private partnerships and working with groups to leverage these resources, the hubs can help coordinate solutions to “shared grand challenges,” she notes. The hub also is endeavouring to extend data science research and education to predominantly undergraduate institutions—including minority-serving institutions—to help add data skills for the developing workforce, she states.

The regional aspect allows each hub to identify priority areas or “spokes” that they are pursuing. For the Midwest, issues relating to water quality; digital agriculture and unmanned aerial systems; and food, energy and water, among others, play a major role.

Read the full article here.

Guest post – Diverse programs from ISU address sustainable cities challenges

By Iowa State University’s Sustainable Cities team

Researchers with the Sustainable Cities team at Iowa State University recognize the difficulty that public officials face in transforming vast amounts of climate and energy research into contextualized public policy. In attempting to address this critical issue, the team’s mission goes beyond the creation of new climate analysis tools to also investigate new methods for integrating communities into the discourse of data creation and energy conservation. To accomplish this agenda, our team engages in various research avenues that range from the creation of new spatial-data tools to enabling community youth activism. Here are just a few highlights of the team’s most recent achievements:

Sustainable Cities’ team leader Ulrike Passe, associate professor of architecture, presented our hybrid physics data modeling framework at the National Science Foundation-sponsored Research Coordination Networking (RCN) workshop held at Carnegie Mellon University on May 17, 2018. The presentation, which capstones one of the major branches of the Sustainable Cities initiatives, demonstrated the integration of our recently developed thermo-physical data simulator with our research into human energy-use behavior to demonstrate how a more holistic neighborhood energy model could be constructed. This same model was presented by graduate research assistant Himanshu Sharma at the fifth High Performance Building’s Conference on July 9, 2018, at Purdue University.

image from Krejci et al. (2016)

The Community Growers Program, a public-engagement initiative started back in March of 2017, has become another core pillar of the Sustainable Cities group research. Spanning a course of eight weeks, researchers worked with 22 leadership-minded youth in the Baker Chapter of the Boys and Girls Club at Hiatt Middle School in Des Moines, Iowa, to create a community garden based on a methodology of spatial, socio-technical storytelling. Through this process, the youth participants were able to learn more about their community through access to geographic information system (GIS) and spatial mapping tools. Associate English professor Linda Shenk, our community engagement lead, and Mallory Riesberg, a collaborator with the Baker Chapter of the Boys and Girls Club, presented this methodology in a presentation titled, “Fostering the Next Generation of Big Data Scientists and Sustainable City Planners” at The Growing Sustainable Communities Conference in Dubuque, Iowa, on Oct. 4, 2017. Team members Linda Shenk, Passe and Alenka Poplin, assistant professor of community and regional planning, would later be published in the 35th Journal of Interaction Design and Architectures for the inclusion of this work in their entry, titled, Engaging Youth with Pervasive Technologies for Resilient Communities.

Poplin, an established researcher in the field of geo-spatial mapping, also leads a research group that seeks to understand how to better develop feedback loops through innovative user-interfaces. An inquiry into mapping places of emotional power was highlighted in a 2017 paper entry to the second edition of Kartographische Nachrichten on Empirical Cartography Journal, titled, “Mapping Expressed Emotions: Empirical Experiments on Power Places.” More recently, Poplin and her researcher team have begun testing an energy survey game they have developed called E-Footprints. The framework of this game includes the extraction of user-performance data to measure and analyze what learning opportunities may help guide more environmentally efficient decision making. This feedback is then generated back into learning mini-games throughout the game, such that the user gets more “energy savvy” as they play. This project begins field-testing in November 2018.

With a diverse, multifaceted research team of nearly 50 members, the Sustainable Cities group continues to advance the capabilities of communities and cities to think sustainably about a better future.

 

Image reference:

Krejci, C. C., Passe, U., Dorneich, M. C., & Peters, N. (2016), “A Hybrid Simulation Model for Urban Weatherization Programs”, Proceedings of the 2016 Winter Simulation Conference, Arlington, VA, December 11–14. T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds. (pdf)

 

Read more about the MBDH’s Smart, Connected, and Resilient Communities initiatives.

Guest post – Data Science Education at Two-Year Colleges

By Matt Fall

Executive Director, Center for Data Science, Lansing Community College

Recently, the American Statistical Association (ASA), with support from the National Science Foundation (NSF), hosted a two-day summit in Washington D.C. to discuss outcomes and curricula for data science programs at two-year colleges. The Two-Year College Data Science Summit (TYCDSS) was intended to help spur the growth of data science programs at these institutions and included representatives from two and four-year institutions, government, and industry.

Sallie Keller (Virginia Tech) plenary talk (photo: Nicholas Horton)

The summit included several plenary talks discussing the role of two-year colleges in addressing the need for data scientists as well as a brief presentation from a graduate of a community college data science program. The majority of the summit, however, was devoted to a series of working sessions where the participants discussed ideal outcomes and competencies for three categories of students:

  • Category 1: students intending to complete an Associate’s degree and begin working
  • Category 2: students intending to earn an Associate’s degree and transfer to a 4-year program
  • Category 3: students seeking a certificate

The working discussions provided an opportunity for the summit participants to discuss what was expected and feasible for a student from each category to complete. The discussions were captured by a designated writing group and there will be a forthcoming write-up summarizing the recommendations of the summit participants with guidelines for two-year college data science programs.

This summit was particularly timely for my colleagues at Lansing Community College (LCC) as we have recently begun development of a data science program. Prior to the summit, participants were provided access to a list of resources that included relevant research, reports from related workshops, and sample syllabi. Of particular interest to us, as we design the layout of our program, were the Park City Math Institute’s Curriculum Guidelines for Undergraduate Programs in Data Science (2016) [PDF], the Oceans of Data Profile of the Data Practitioner (2016), and the Oceans of Data workshop report on Building Global Interest in Data Literacy (2016). The resources provided, candid discussions with other two-year colleges regarding their programs, and the discussions about realistic competency expectations were also of interest and informative to our program design.

The intent of the TYCDSS directly supports the MBDH’s priority area of interest in data science, education and workforce development. Two-year colleges provide higher education accessibility to many students who could not or would not otherwise pursue an advanced degree. An increasing number of these schools are offering certificate and Associate’s degree programs in data science and analytics to support growing workforce demand. Growth in these types of programs should naturally lead to an increase in data competency, enrollment in university programs, and larger hiring pools for data science based careers.

Related information:

Guest post – URSSI: Conceptualizing a US Research Software Sustainability Institute

First URSSI workshop attendees (Credit: Mike Hucka)

Contributed by Daniel S. KatzJeff CarverSandra GesingKarthik RamNic Weber

 

The NSF-funded conceptualization of a US Research Software Sustainability Institute (URSSI) is making the case for and planning a possible institute to improve science and engineering research by supporting the development and sustainability of research software in the US.

Research software is essential to progress in the sciences, engineering, humanities, and all other fields. In many fields, research software is produced within academia, by academics who range in experience and status from students and postdocs to staff members and faculty. Although much research software is developed in academia, important components are also developed in national laboratories and industry. Wherever research software is created and maintained, it can be open source (most likely in academia and national laboratories) or commercial/closed source (most likely in industry, although industry also produces and contributes to open source.)

The open source movement has created a tremendous variety of software, including software used for research and software produced in academia. This plethora of solutions is not easy for researchers to find and use out-of-the-box. Standards and a platform for categorizing software for communities are lacking, which often leads to novel developments rather than reuse of solutions. Three primary classes of concern are pervasive across research software in all research disciplines and have stymied research software from achieving maximum impact:

  • Functioning of the individual and team: issues such as training and education, ensuring appropriate credit for software development, enabling publication pathways for research software including novel methods beyond “classical” academic publications, fostering satisfactory and rewarding career paths for people who develop and maintain software, increasing the participation of underrepresented groups in software engineering, and creating and sustaining pipelines of diverse developers.
  • Functioning of the research software: supporting sustainability of the software; growing community, evolving governance, and developing relationships between organizations, both academic and industrial; fostering both testing and reproducibility, supporting new models and developments (for example, agile web frameworks, software as a service), and supporting contributions of transient contributors (for example, students).
  • Functioning of the research field itself: growing communities around research software and disparate user requirements, avoiding siloed developments, cataloging extant and necessary software, disseminating new developments, and training researchers in the usage of software.

The goal of this conceptualization project is to create a roadmap for a URSSI to minimize or at least decrease these types of concerns. To do this, the two aims of the URSSI conceptualization are to:

  1. Bring the research software community together to determine how to address the issues about which we have already learned. In some cases, there are already subcommunities working together on a specific problem, including those that we are part of, but those subcommunities might not be working with the larger community. This leads to a risk of developing solutions that solve one issue but don’t reduce (or might even deepen) other concerns.
  2. Identify additional issues URSSI should address, identify communities for whom these issues are relevant, determine how we should address the issues in coordination with the communities, and determine how to prioritize all the issues in URSSI.

We are not working in a vacuum, but with other like-minded projects. In addition to Better Scientific Software (BSSw) and activities around research facilitators (ACI-REF) in the US, there are two ongoing institutes in science gateways (SGCI) and molecular sciences (MolSSI); a recently completed conceptualization in high energy physics (S2I2-HEP); two other conceptualization projects now underway in geospatial software and fluid dynamics; and a large number of software development and maintenance projects. In the UK, the Software Sustainability Institute (SSI), which has been in operation since 2010, is an inspiration and a potential model for our work.

Given these existing activities, part of our challenge is to define how we will work with these other groups. For example, we might decide that they perform an activity so well that we should point to it, such as the SSI’s software guides. Or we might decide to either duplicate or enhance an activity they do to expand its impact, such as working with the SGCI to offer incubator services to a wider community than just gateway developers. Or we might decide to collaborate with one or more groups, such as on policy campaigns aimed at providing better career paths for research software developers in universities.

We have held one workshop and are planning three more, in addition to a community survey we plan to have out soon, and a set of ethnographic studies of specific projects. We are communicating through our website, a series of newsletters, and a community discussion site.

URSSI welcomes members of the research software community to join us, both to help us determine how to proceed and to directly contribute. Please sign up for the URSSI mailing listcontribute to our discussions, and potentially publish a guest blog post on the URSSI blog on a topic around software sustainability.

Welcome to the new MBDH Community Blog

Greetings!

Today we are launching a new MBDH Community Blog, which is intended to extend information sharing around events and projects, as well as expand our channels for Community conversation.

We plan to run 1-2 posts per month, and we are now seeking submissions from the MBDH Community – including the Spokes and our other collaborative projects – that describe your contributions and developments in the broader data ecosystem. Of interest are short reports and highlights from data-related meetings, events, or project outcomes, inclusive of the role and impact of the MBDH for these efforts.

We welcome contributions from the Social Sciences and Humanities, including short contributions that address data and algorithmic ethics, or coming changes for work, daily life, and public engagement in U.S data policy.

We encourage submissions from practitioner and NGO perspectives, as well as those from academia, industry, or government. We will provide additional guidelines shortly. If you are interested in submitting a Blog post, please send your contact information and the subject area to: info@midwestbigdatahub.org

Our first guest post is by Daniel Katz, Assistant Director for Scientific Software and Applications at the National Center for Supercomputing Applications (NCSA). Check out his post on the US Research Software Sustainability Institute (URSSI) project.

Finally, I’ll note a couple of activities where we are currently seeking input and engagement:

Add your voice to our Midwest Big Data Hub evaluation

  • To create a robust strategic plan for the Midwest Hub.
  • To plan toward long-term sustainability, especially financial sustainability, for the Midwest Hub.
  • Provide your input here: https://www.surveymonkey.com/r/MBDHSurvey

Participate in our election of five (5) At-large representatives for the MBDH Steering Committee:  https://midwestbigdatahub.org/2018-steering-committee-at-large-nominees/

As always, please contact us with any ideas or questions.
Thank you for your continued support!

All the best,
Melissa Cragin
Executive Director, Midwest Big Data Hub